الخطة الوطنية التنفيذية للكفاءة الطاقة في جمهورية السودان

2013-2016م

أكتوبر 2012
المحتويات

تمهيد وشكر .. 4
كلمة الوزير ... 5
0.0 ملخص تنفيذي ... 6
المقدمة ... 10
1 الإطار العام: الأهداف الإستراتيجية الوطنية
1.1 المؤشرات الرئيسية ... 12
1.2 الهدف الإستراتيجي ... 13
1.2.1 معمل الاستهلاك بالقطاعات للخمس سنوات 2007-2011 : 13
1.3 منهجية حساب قيمة استهلاك سنة الأساس و الهدف الإستراتيجي الوطني للفضاء الطاقة لعام 2020 .. 14
1.4 الجهة المسؤولة عن الخطة الوطنية .. 15
2 إجراءات كفاءة الطاقة الكهربائية في القطاعات المختلفة
2.1 القطاع السكني .. 16
2.1.1 جدول إجراءات كفاءة الطاقة .. 16
2.1.2 المعلومات التفصيلية المتعلقة بالإجراء .. 18
2.2 القطاع الحكومي .. 18
2.2.1 جدول إجراءات كفاءة الطاقة .. 18
2.2.2 المعلومات التفصيلية المتعلقة بالإجراء .. 20
2.3 القطاع الصناعي: .. 20
2.3.1 جدول إجراءات كفاءة الطاقة .. 20
2.3.2 المعلومات التفصيلية المتعلقة بالإجراءات .. 22
3 إجراءات كفاءة الطاقة في قطاع الكهرباء... 22
3.1 جدول إجراءات شركات التوزيع والنقل والتوليد ... 22
3.2 المعلومات التفصيلية المتعلقة بالإجراءات .. 22
3.2.1 المعلومات التفصيلية لتخفيض الفقد في شبكات النقل .. 22
3.2.2 المعلومات التفصيلية لتخفيض الفقد في شبكات التوزيع .. 25
3.2.3 المعلومات التفصيلية لزيادة الطاقة الإنتاجية لمحطات الوقود 28

الخطة الوطنية للفضاء الطاقة 2013 - 2016
الخطة الوطنية للفضاء العقاري 2013 - 2016
تمهيد وشكر

أعد الخطة الوطنية لكفاءة الطاقة لجمهورية السودان وفقاً للإطار الاسترشادي العربي لتحسين كفاءة الطاقة الكهربائية وترشيد استهلاكها لدى المستخدم النهائي.

تم إعداد هذا الإطار من قبل إدارة الطاقة في جامعة الدول العربية بالتعاون مع مشروع تكامل سوق الطاقة الأوروبي (MED – EMIP) والمركز الإقليمي للطاقة المتعددة وكفاءة الطاقة (RCREEE).

ومن هنا نرجو الشكر لكل من شارك في إعداد هذه الخطة وخصص بالشكر المركز الإقليمي للطاقة المتعددة وكفاءة الطاقة (RCREEE) لما قدمه من دعم فني لإخراج هذه الخطة في صورتها النهائية.
كلمة الوزير

كفاءة الطاقة هي الوسيلة الأسرع والأقل تكلفة لتثمين الطاقة ومجابهة تغير المناخ وتحديات
اقتصادية عديدة علاوة على دورها في الحفاظ على حق الأجئيات القادمة من الطاقة الناضجة خاصة
وأن بلادنا تشهد نمواً متزايداً في الطلب على الكهرباء مما يجعل توفيرها للجميع تحدياً للدولة.
تبني وزارة الموارد المائية والكهرباء هذه الخطة وهي تدرك تماماً أن تنفيذها يقتضي التنسيق
والتعاون مع جهات أخرى بالدولة وجهات أخرى خارجية كالمجلس الوزاري العربي للكهرباء.
وتؤكد أن الوزارة في سبيل تنفيذ هذه الخطة:

- ستستعمل على توفير الموارد اللازمة لتنفيذ الخطة ومتابعة مخرجاتها.
- ستواصل تحليل النتائج الكمية لخفض الفقد الكهربائي بناء عليه.
- ستقوم بالتنسيق مع الهيئة السودانية للمواصفات والجهات ذات الصلة بالدولة بما في ذلك
 الضرائب والجمارك لاستخدام أجهزة عالية الكفاءة.
- ستستعمل على جعل القطاع العام قدوة في الإستخدام الأمثل للطاقة وتوعية المستهلك للترشيد.
- ستتعاون مع وزارة التربية والتعليم ووزارة التعليم العالي لغرس السلوك في الشباب لأجل خفض
 الإستهلاك الطوعي.
- ستستعمل على الاستفادة القصوى من التوليد المائي المتاح توفيراً للوقود البترولي حفظاً لحق
 الأجئيات القادمة.
- ستدعم رفع مساهمة الطاقة المتجددة في إنتاج الكهرباء بالسياسات والموارد المطلوبة.
- ستتقبل بدقة المعلومات وتحديثها وستعمل في قيادة الوزارة بعنوان مفتوحة وأبواب مفتوحة
 وشفافية تامة لتسهيل العمل على تنفيذ الخطة.
- ستتغلب على تشجيع القطاع الخاص للمشاركة مع القطاع العام للإستثمار في مجال كفاءة
 الطاقة والطاقة المتجددة وذلك بعد إعداد آليات الرقابة التنظيمية لحماية مصالح الشركاء.
- تتمتع لدعم الجامعة العربية والمركز الإقليمي للكفاءة الطاقة والخبراء الدوليين
 المتحدون معهم في تنفيذ الخطة لخروج بنتائج ملموسة في الخطة في مداها الأول حتى يكون ذلك
 حافزاً للإهتمام بالمراحل التالية ونتمكن من تحقيق الهدف الأكبر للخطة بتوفر ما ينافر 10% من
 الطلب على الكهرباء.

د. تابيتي بطرس شوكاي

الخطة الوطنية لكفاءة الطاقة 2013 - 2016
0. ملخص تنفيذ
تهدف الخطة الوطنية للفضاء الطاقة الكهربائية بالسودان إلى تحقيق وفر في الطاقة الكهربائية من خلال إجراءات تتم في مجالات توليد الكهرباء ونقلها وتوظيفها وكذلك على مستوى المستهلك النهائي.
الهدف الكلي للخطة هو تحقيق وفر يقدر بحوالي 9.7% من إجمالي الطلب على الطاقة الكهربائية بالسودان إبتداءً من العام 2015م حتى العام 2020م.
شملت الخطة إجراءات تحقيق كفاءة في التوليد بشتيه المائي والحراري كما شملت مشروعات الطاقة المتجددة من طاقة رياح وطاقة شمسية علاوة على إجراءات تحقيق وفراً على مستوى المستهلك النهائي في خفض استهلاك الإقارة بالقطاع السكني وخفض الاستهلاك في المباني الحكومية واستخدام أجهزة منزلية عالية الكفاءة.
وفرًا في الطاقة الكهربائية وبالتالي خفض تكلفة الاستثمار فيها.
توفر الوقود الأحفوري حفظًا لحق الأجيال القادمة.
المحافظة على البيئة بخفض انبعاثات ثاني أكسيد الكربون.

جدول ملخص الإجراءات:

<table>
<thead>
<tr>
<th>कुल कोû कोû (रुपया)</th>
<th>वर्ष</th>
<th>रॉलन</th>
<th>कुल कोû कोû (रुपया)</th>
<th>वर्ष</th>
</tr>
</thead>
<tbody>
<tr>
<td>1095 रुपया/कोû तक</td>
<td>2020</td>
<td>306.6 रुपया/कोû तक</td>
<td>2016</td>
<td>3 मिलियन रुपया</td>
<td>2013</td>
<td>3 मिलियन रुपया</td>
<td>2014</td>
<td>1 मिलियन रुपया</td>
<td>2013</td>
<td>1 मिलियन रुपया</td>
</tr>
<tr>
<td>0.86</td>
<td>1.14</td>
<td>306.6</td>
<td>2016</td>
<td>3 मिलियन</td>
<td>2013</td>
<td>3 मिलियन</td>
<td>2014</td>
<td>1 मिलियन</td>
<td>2013</td>
<td>1 मिलियन</td>
</tr>
<tr>
<td>الاستخدام</td>
<td>الكمية</td>
<td>السنة</td>
<td>الكمية</td>
<td>السنة</td>
<td>الكمية</td>
<td>السنة</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هذا الإجراء لا يعطى وفرًا مباشرًا في الطاقة ولكن يوفر ساعات في الشبكات</td>
<td>0.627</td>
<td>2014</td>
<td>11 مليون دولار</td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>الشركة السودانية للتوزيع الكهربائي المحدودة وأصحاب المصانع</td>
<td>3.6</td>
<td>2015</td>
<td>4209 ق وس</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تخفض الفقد في شبكات التوزيع</td>
<td>2.6</td>
<td>2013</td>
<td>4209 ق وس</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>الشركة السودانية للتوزيع الكهربائي</td>
<td>88.213 مليون يورو</td>
<td>2016</td>
<td>تأهيل نظام التوليد المائي</td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تأهيل نظام التوليد المائي بالمحطة لزيادة إنتاجها 5.5 ق وس في العام</td>
<td>6.893 طن م</td>
<td>2019</td>
<td>زيادة الطاقة الإنتاجية لمحطة الروديرة الكهرومائية</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زيادة توليد المحطة 42 ق وس في العام</td>
<td>36,896 طن م</td>
<td>2014</td>
<td>رفع جاهزية محطة توليد جبل أولاء الكهرومائية</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رفع قدرة المحطة إلى 150 ق وس في العام</td>
<td>79,062 طن م</td>
<td>2013</td>
<td>إعادة تأهيل ورفع قدرة محطة سار الكهرومائية</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

الخطة الوطنية للكفاءة الطاقية 2013 - 2016
| الرقم | السعة | رأس المال المادى | السنة | شركة البترول الوطنية | تقرير نظام التوليد الحراري | خفق تكلفة إنتاج الوقود من جازولين إلى جازولين تقيل | نموذج التوليد الحراري | خفق استهلاك الوقود بالسائمة بالوقود الحراري | توليد رياح ميداوات | محطة توليد نيلاب | محطة توليد نيلاب بالطاقة الشمسية |
|-------|-------|----------------|-------|----------------------|-----------------------|--------------------------------|----------------------|--------------------------------|------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0.314 | 879 | 2051 | 7 | يناير 2014 | الشركة السودانية للتسويات الحرارية | تحسين معدل استهلاك الملحبات | خفق استهلاك الوقود بالسائمة بالوقود الحراري | رفع كفاءة وحدات التوليد الحراري وخلق زيادة المرونة الحرارية للوقود | محطة توليد رياح ميداوات | محطة توليد نيلاب بالطاقة الشمسية |
| 11.4 | 412,251| 34,026 | 213 | يناير 2015 | إدارة الطاقة المتجمدة، وزارة | محطة توليد نيلاب بالطاقة الشمسية |
| 11.4 | 412,251| 34,026 | 213 | يناير 2015 | إدارة الطاقة المتجمدة، وزارة | محطة توليد نيلاب بالطاقة الشمسية |
| 11.4 | 412,251| 34,026 | 213 | يناير 2015 | إدارة الطاقة المتجمدة، وزارة | محطة توليد نيلاب بالطاقة الشمسية |
| 11.4 | 412,251| 34,026 | 213 | يناير 2015 | إدارة الطاقة المتجمدة، وزارة | محطة توليد نيلاب بالطاقة الشمسية |
|
|---|---|---|---|---|
| 27 | 53,268 طن م | 11,113 طن م | 2031 | 11,113 \\n| تحدد لاحقاً بعد اكتمال مرحلة التجهيز | 400 مليون دولار | بطاقة كفاءة الطاقة | مشروع كهرباء الريف |
| 18 | | | | |

ملخص التكلفة والوفر:

<table>
<thead>
<tr>
<th></th>
<th>إجمالي الوفر التراكمي حتى العام 2020م</th>
<th>التكلفة الكلية حتى العام 2020م</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14,735 قيقداً واط ساعة</td>
<td>519 مليون دولار</td>
</tr>
<tr>
<td></td>
<td>3.56 سنت دولار / كيلو واط ساعة</td>
<td></td>
</tr>
</tbody>
</table>

تم استبعاد إجراء كهرباء الريف لبعده مداه (20 سنة) وارتفاع تكاليفه.

ك وس: كيلو واط ساعة
ق وس: قيقداً واط ساعة
طن م: طن نفط مكافئ

ككلفة الوفر النهائية بالنسبة للطاقة الشمسية ستدد بعد التعاقد على المشاريع.
المقدمة

وقد أدركت الوزارة الفرص المتاحة لتحسين كفاءة الطاقة الكهربائية من خلال تخفيف الفقد الكهربائي في منظومة توليد ونقل وتوزيع الكهرباء وتشجيع الكهرباء وترشيد إستهلاكها لدى المستخدم النهائيAVIS

وأستخدم التوليد من الطاقة المتجددة كبديل تطويراً للوقود الأحفوري للأجيال القادمة.

ورغمًا من الوفورات الكبيرة التي سوف تتحقق في المرحلة الأولى من الخطة 2013 – 2016 فإنه من المنظور أن تشهد المرحلة الثانية للطاقة (2017-2020م) نشاطاً أوعس في تحقيق وفرات في قطاع الإستهلاك بعد تهيئة الوسائل والأدوات من قوانين وتجهيزات من خلال تطبيق المرحلة الأولى.

ومن الواضح أن الخطة أولاً إهتماماً بقطاعي إنتاج واستهلاك الكهرباء على حد سواء وذلك وفقاً لما ورد في إعلان الكويت الصادر عن القمة العربية الاقتصادية والتنموية والاجتماعية (الكويت-20 يناير/كانون الثاني 2009). استناداً إلى الفترة الخاصة بالطاقة "الإرتقاء بمستوى معيشة المواطنين العربي" والتي تنص على "تعزيز التعاون العربي في مجال الطاقة، لاسيما تحسين كفاءتها، وتشجيع استخدامها، كوسيلة لتحقيق التنمية المستدامة، والقدرة الخاصة بالطاقة في برنامج العمل والذي تنص عليه: من أجل تحقيق مستويات أفضل من المعيشة لمواطني الدول العربية، وتلبية الطلب المتزايد على الطاقة ب差异化 صورها، يتعين اتخاذ ما يلي:

- استكمال مشروعات الربط الكهربائي العربي.
- توعية شبكات الغاز الطبيعي.
تنمية استخدام مصادر الطاقة المتاحة ومنها: الطاقة المتجددة, الطاقة النووية للأغراض السلمية.

- كفاءة استخدام الطاقة في الإنتاج والإستهلاك.

- تنمية استخدام الطاقة الشمسية ودعم البحوث اللازمة لتطويرها.

- وضع الإطار التشريعي لإنشاء السوق العربية للطاقة الكهربائية.

و لتحقيق أهداف المجلس الوزري العربي للكهرباء الرامية إلى تنمية التعاون وتنسيق الجهود في مجالات إنتاج ونقل وتوزيع الكهرباء من خلال مجموعة من الإجراءات منها تشجيع ترشيد استخدامات الطاقة الكهربائية في الدول العربية؛ وأخذًا في الاعتبار توصيات وورش العمل التي تقام تحت رعاية المجلس، فإن النموذج يعكس الخطة الوطنية للكفاءة الطاقة للسودان ومساهمته في مجال تحسين كفاءة استهلاكها لدى المستخدم النهائي. والغرض منه تعزيز وتحسين كفاءة استخدام الطاقة الكهربائية لدى المستخدم النهائي في السودان مع الأخذ في الاعتبار الجدوى الاقتصادية للإجراءات المتبقية.

نطاق العمل: يطبق هذا الإطار على شركات توزيع ونقل وتوليد الكهرباء والمستخدمين النهائيين للطاقة ومرزوي خدمات تحسين كفاءة الطاقة مستقبلاً. وذلك من خلال:

(أ) توفير الأهداف الاسترشادية، وكذلك الألياف والحوافز والأطر المؤسسية والمالية والقانونية اللازمة

(ب) تهيئة الظروف المناسبة لتطوير وتعزيز وجود سوق لخدمات الطاقة.
1. الإطار العام: الأهداف الإسترشادية الوطنية

المؤشرات الرئيسية

<table>
<thead>
<tr>
<th>الرقم</th>
<th>المؤشر</th>
<th>الوحدة</th>
<th>指的是</th>
<th>2020</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>كثافة الطاقة الكهربائية</td>
<td>KwH/GDP (US$)</td>
<td>1</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>2</td>
<td>الإنتاج الإجمالي السنوي للطاقة الكهربائية</td>
<td>قيقة واط ساعة</td>
<td>2</td>
<td>26,500</td>
<td>8,470</td>
</tr>
<tr>
<td>3</td>
<td>الطاقة الكهربائية المستورة</td>
<td>قيقة واط ساعة</td>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>الطاقة الكهربائية المصدرة</td>
<td>قيقة واط ساعة</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>معدل نمو الطلب المتوقع على الطاقة الكهربائية</td>
<td>%</td>
<td>5</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>الطاقة الأولية المستهلكة على المستوى الوطني</td>
<td>طن نفط مكافئ</td>
<td>6</td>
<td>11,000,000</td>
<td>11,000,000</td>
</tr>
<tr>
<td>7</td>
<td>حصة الطاقة الكهربائية من الاستهلاك الأولي للطاقة</td>
<td>%</td>
<td>7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>8</td>
<td>نسبة إستهلاك الطاقة الكهربائية حسب القطاعات</td>
<td>%</td>
<td>8</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>القطاع السكني</td>
<td></td>
<td>8</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>القطاع الصناعي</td>
<td></td>
<td>8</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>القطاع التمليعي</td>
<td></td>
<td>8</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>القطاع الحكومي</td>
<td></td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>القطاع الزراعي</td>
<td></td>
<td>8</td>
<td>0.187</td>
<td>مم/م2 وس</td>
</tr>
<tr>
<td>9</td>
<td>التكلفة الحالية لإنتاج كوس</td>
<td>$ / كوس</td>
<td>9</td>
<td>0.187</td>
<td>0.187</td>
</tr>
<tr>
<td>10</td>
<td>معدل التوزيع (نسبة المستفيدين من الشبكة الكهربائية)</td>
<td>%</td>
<td>10</td>
<td>76</td>
<td>32</td>
</tr>
</tbody>
</table>

المصدر: الشركة السودانية للتوزيع
المصدر: وزارة النفط

الخطة الوطنية لكافأة الطاقة 2013 - 2016

صر 12
1.2.1 الهدف الإسترشادي

تم وضع الهدف الإسترشادي للفيضاءة الطاقة المعبر عن نسبة أو قيمة الوفير في الطاقة الكهربائية المستهلكة لعام 2016م وعام 2020م والنتائج عن إجراءات تحسين كفاءة الطاقة الكهربائية وترشيد استهلاكها وفقاً لما تم إعلانه رسمياً على المستوى الوطني. وقد تم الإسترشاد بالطريقة الموضحة أدناه لحساب الهدف الإسترشادي. وبالنسبة للأهداف الإسترشادية للفيضاءة الطاقة على مستوى القطاعات المختلفة فقد تم حسابها وفقاً لما تم إدراجها من إجراءات في الفقرة 1.2 بحيث تخدم تحقيق الهدف الإسترشادي الوطني للفيضاءة الطاقة.

<table>
<thead>
<tr>
<th>القطاع الإسترشادي الوطني للفيضاءة الطاقة</th>
<th>القطاع</th>
</tr>
</thead>
<tbody>
<tr>
<td>في عام 2020</td>
<td>%</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>17.6</td>
<td>4.9</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>تحسين معدل القدرة</td>
<td>من 0.6-0.8 إلى 0.95</td>
</tr>
<tr>
<td>الكلي</td>
<td>32</td>
</tr>
<tr>
<td>11.8</td>
<td>734</td>
</tr>
</tbody>
</table>

معدل إستهلاك الخمس سنوات الأخيرة الإجمالي = 6210 قبقة واط ساعة

1.2.1.1 معدل الإستهلاك بالقطاعات للخمس سنوات 2007-2011:

<table>
<thead>
<tr>
<th>القطاع الإستهلاك (قبصة واط ساعة)</th>
<th>القطاع</th>
<th>الرقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>2649</td>
<td>القطاع السكني</td>
<td>1</td>
</tr>
<tr>
<td>768.4</td>
<td>القطاع الصناعي</td>
<td>2</td>
</tr>
<tr>
<td>843.6</td>
<td>القطاع التجاري</td>
<td>3</td>
</tr>
<tr>
<td>203</td>
<td>القطاع الزراعي</td>
<td>4</td>
</tr>
<tr>
<td>725.4</td>
<td>القطاع الحكومي</td>
<td>5</td>
</tr>
</tbody>
</table>
1.3 منهجية حساب قيمة إستهلاك ستة الأساس و الهدف الإسترشادي الوطني للكفاءة الطاقة لعام 2020

- يتم استخدام الاستهلاك النهائي للطاقة الكهربائية للسلاسل الخام الأخيرة السابقة (والتي تساوي 6210 ق وس) لتحديد الهدف، وذلك من البيانات الرسمية المتاحة. والمخصص بالإستهلاك النهائي للطاقة هو إجمالي كمية الطاقة الكهربائية المنتجة مقاسة بالقيماواط ساعة والتي تم إنتاجها من قبل جميع محطات التوليد لتضخ إلى الشبكة القومية لنقلها وتوزيعها أو استهلاكها ذاتياً.

- قيمة إستهلاك ستة الأساس هي عبارة عن معدل إستهلاك الطاقة الكهربائية خلال الخمس سنوات الأخيرة وهي كمية غير معدلة حسب درجات الحرارة اليومية أو التغيرات الهيكلية أو التغيرات في الإنتاج.

- على أساس هذه القيمة التي تعتبر قيمة إستهلاك ستة الأساس سوف يتم حساب الهدف الإسترشادي الوطني للكفاءة الطاقة خلال الفترة الزمنية الخاصة بهذا الإطار الإسترشادي (8 سنوات).

مثال توضيحي:

إذا كانت قيمة معدل إستهلاك الخمس سنوات الأخيرة تساوي 10,000 قيماواط ساعة وتم تحديد الهدف الإسترشادي للكفاءة الطاقة لعام 2020 كنسبة تساوي 20٪ من هذا المعدل فبالتالي فإن 2,000 قيماواط ساعة من الطاقة الكهربائية يجب توفيرها نتيجة لتطبيق الإجراءات التوافدة في الخطة الوطنية للكفاءة الطاقة حتى العام 2020م.

إذا فإن الهدف الإسترشادي لتوفر الطاقة الكهربائية بالقيماواط ساعة في عام 2020م يجب أن يكون مدعوماً بالإجراءات المذكورة والموضحة في الخطة الوطنية للكفاءة الطاقة بحيث تكون الحسابات المطلوبة للوصول إلى هذا الهدف مبنية على مجموع الوفورات السنوية التراكمية الناتجة عن تطبيق هذه الإجراءات.
هذه المنهجية في الحساب لا تتطلب أن تكون جميع الإجراءات الواردة في الخطة الوطنية من تلك التي يستمر تنفيذها حتى عام 2020م أو حتى بشكل مستدام، ولكن معيار الاستدامة لكل من هذه الإجراءات يتمثل في حساب الوفر الناتج عن تطبيقه وإضافته بشكل تراكمي مع الوفر الناتج عن تطبيق باقي الإجراءات للوصول إلى الهدف الاسترشادي لعام 2020م.

4.1 الجهة المسؤولة عن الخطة الوطنية

<table>
<thead>
<tr>
<th>الاسم</th>
<th>محمد أحمد محمد أحمد الدخيلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>المنصب</td>
<td>الأمين العام للجهاز الفني لتنظيم ورقابة الكهرباء</td>
</tr>
<tr>
<td>المؤسسة</td>
<td>الجهاز الفني لتنظيم ورقابة الكهرباء</td>
</tr>
<tr>
<td>العنوان البريدي</td>
<td>السودان- الخرطوم- المقر- شارع الجامعة- ص.ب 11113 الرمز البريدي 6881</td>
</tr>
<tr>
<td>الهاتف</td>
<td>0120660345</td>
</tr>
<tr>
<td>الفاكس</td>
<td>0183766866</td>
</tr>
<tr>
<td>البريد الإلكتروني</td>
<td>eldkhry@yahoo.com, mohamed.eldikhairy@erasudan.com</td>
</tr>
<tr>
<td>الموقع الإلكتروني</td>
<td>www.erasudan.com</td>
</tr>
</tbody>
</table>
2 إجراءات كفاءة الطاقة الكهربائية في القطاعات المختلفة

2.1 القطاع السكني

2.1.1 جدول إجراءات كفاءة الطاقة

<table>
<thead>
<tr>
<th>الإجراء</th>
<th>المدة التنفيذ</th>
<th>الطاقة المتوقع توفيرها خلال 4 سنوات 2013-2016</th>
<th>خفض استهلاك الإشارة بالقطاع السكني</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.2</td>
<td></td>
<td></td>
<td>306.6 قيرات واط ساعة</td>
</tr>
</tbody>
</table>

2.1.2 المعلومات التفصيلية المتعلقة بالإجراء

<table>
<thead>
<tr>
<th>الإجراء رقم (1)</th>
<th>الدافع لتطبيق الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- تطبيق وفورات في الطاقة المستهلكة في الإضاءة بالقطاع السكني.
- تطبيق وفورات في التولد الحراري.
- الأثر البيئي الممتاز بتقليل الانبعاث الحراري.
- تقليل الفواتير للمستهلكين في القطاع السكني.
- المساهمة في إنقاص النزاع الماسة في الشبكة.
- توفير ساعات تحويلية في محطات توزيع الكهرباء.
- تخفيف التحميل على خطوط توزيع الكهرباء ومساهمة في تقليل الفقد الكهربائي بها.

وصف الإجراء

2

- استبدال عدد مليون لحمة تنجزتان بلامبات ترشيد مدمجة CFL.
- عرضت عدة شركات مشروع تغيير مليون لحمة تنجزتان بلامبات.
- فلوبيست مدمجة جاري التفاوض لتكملة الاتفاق مع أحماها.

ويستدعى هذا المشروع:
- حصص وتسجيل اللامبات.
- وضع خطة للاستبدال.
- التخلص الآمن من المسترجع.
الشركة السودانية لتوزيع الكهرباء المحدودة. الشركة المنفذة للمشروع

القطاع السكني. الشركة السودانية لتوزيع الكهرباء المحدودة و الشركة السودانية لنقل الكهرباء و شركات التوليد و جهاز تنظيم و رقابة الكهرباء والمجلس الأعلى للبيئة.

<table>
<thead>
<tr>
<th>الجهة المسؤولة عن التنفيذ</th>
<th>الجهات المعنية</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>تكلفـية تنفيذ الإجراء</th>
<th>التكلفـية الكلية</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 مليون دولار.</td>
<td></td>
</tr>
<tr>
<td>3 مليون دولار.</td>
<td></td>
</tr>
</tbody>
</table>

كلفة الوفر

<table>
<thead>
<tr>
<th>تخفـيف الدعم</th>
</tr>
</thead>
<tbody>
<tr>
<td>توفير 43.8 قيـفاواط ساعة في العام 2013م ترتفـع إلى 87.6 ق و س في العام 2014م لتصل 262.8 ق في العام 2020م</td>
</tr>
</tbody>
</table>

 المصدر المالي

<table>
<thead>
<tr>
<th>المصدر المتوفـل</th>
</tr>
</thead>
<tbody>
<tr>
<td>الإعفاء الجمركي الممنوح من وزارة المالية والإقتصاد الوطني للمعدات.</td>
</tr>
<tr>
<td>الحوافز الممنوـحة من آلية التنمية النظيفة (CDM) أو ما يقوم مقامها بعد العام 2012 موعد نهـايتها.</td>
</tr>
</tbody>
</table>

اللائحة المالية المحفزة

<table>
<thead>
<tr>
<th>التوعيـة</th>
</tr>
</thead>
<tbody>
<tr>
<td>وضع ملصقات توعوية بمراكز بيع الكهرباء، وتوزيع مطبوعات للزبائن، حملات إعلامية عبر وسائـل الإعلام المرئية والمسموعة والمجرور، من المتوقـع توفير 307 قيـفا واط ساعة تراكمية من العام 2013م حتى 2016م ترتفع إلى 1095 قيـفاواط ساعة من العام 2013م حتى 2020م.</td>
</tr>
</tbody>
</table>

تقييم الوفر على مستوى القطاع

<table>
<thead>
<tr>
<th>مستوى القطاع</th>
</tr>
</thead>
<tbody>
<tr>
<td>منهجية حساب أثر تطبيق النشاط تمت على أساس إن لمبات التنجستان المستبـلذة ذات قدرة 100 واـط وان لمبات الترشيد التي تحل محلها ذات قدرة 20 واط وساعات تشغيل يومية 3 ساعات وعمر إفتراضي 3 سنوات. يرتفـع عدد اللمبات إلى 3 مليون لحـبة في العام 2020م.</td>
</tr>
</tbody>
</table>

الخطة الوطنية لكافءة الطاقة 2013 - 2016
2.2 القطاع الحكومي

2.2.1 جدول إجراءات كفاءة الطاقة

<table>
<thead>
<tr>
<th>nghèoية التنفيذ</th>
<th>الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنة</td>
<td>خفض استهلاك الكهرباء في المباني الحكومية</td>
</tr>
<tr>
<td>425 قيقواط ساعة</td>
<td></td>
</tr>
</tbody>
</table>

2.2.2 المعلومات التفصيلية المتعلقة بالإجراء

<table>
<thead>
<tr>
<th>الإجراء رقم (1) م</th>
<th>الدافع لتطبيق الإجراء</th>
<th>وصف الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ترشيد الطاقة في كل المنشآت الحكومية والمساهمة في تقليل الإنفاق الحكومي كلما</td>
<td></td>
</tr>
<tr>
<td></td>
<td>الإستهلاك غير المرشد للكهرباء في المباني الحكومية بشكل نسبة كبيرة من استهلاك الطاقة</td>
<td></td>
</tr>
<tr>
<td></td>
<td>تخفيف الضغط الكهربائي المحدود؛ يحقق توفيرًا في الطاقة المولدات من المصادر الحرارية مما يعكس إيجاباً على توفير وقود الاحتياطي وتقليل انبعاثات ثاني أكسيد الكربون</td>
<td></td>
</tr>
<tr>
<td></td>
<td>المساهمة في خفض الدوحة النهارية في الشبكة القومية</td>
<td></td>
</tr>
<tr>
<td></td>
<td>مساهمة في تخفيض الفقد الكهربائي في شبكتي نقل وتوزيع الكهرباء</td>
<td></td>
</tr>
<tr>
<td></td>
<td>توفير سهولة نقل وتوزيع الكهرباء واستغلالها لتزويد شبانة آخرين</td>
<td></td>
</tr>
<tr>
<td></td>
<td>تخفيف الاستهلاك الحكومي من الطاقة الكهربائية بنسبة 15٪</td>
<td></td>
</tr>
<tr>
<td></td>
<td>تحديد مسئول عن ترشيد استخدام الطاقة الكهربائية في كل وحدة حكومية من العاملين بالوحدة مع إيجاد نظام تفتيشي لضمان نجاح تنفيذ واستمرارية الإجراء</td>
<td></td>
</tr>
</tbody>
</table>

الخطة الوطنية للكفاءة الطاقة 2013 - 2016
العمل على تركيب عدادات خاصة لكل مسكن حكومي بدلًا عن الحساب الجماعي وسيتم ذلك بعد الحصار الذي تقوم به الجهات المختصة في القطاع الحكومي.

العمل على تطبيق نظام العدادات الذكية مستقبلاً بعد تأهيل التوصيات الداخلية للمباني لتحقيق وفورات في المرحلة الثانية.

<table>
<thead>
<tr>
<th>الوحدة</th>
<th>الوحدة الحكومية المعنية</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>تكلفة تنفيذ الإجراء</td>
</tr>
<tr>
<td>2</td>
<td>تكلفة الكلية</td>
</tr>
<tr>
<td>3</td>
<td>كلفة الوفر</td>
</tr>
<tr>
<td>4</td>
<td>تحسين الدعم</td>
</tr>
<tr>
<td>5</td>
<td>مصدر التمويل</td>
</tr>
<tr>
<td>6</td>
<td>الأليات المالية المحفزة</td>
</tr>
<tr>
<td>7</td>
<td>التوعية</td>
</tr>
<tr>
<td>8</td>
<td>تقييم الوفر على مستوى القطاع</td>
</tr>
<tr>
<td>9</td>
<td>الحملات إعلامية بالملصقات والمطبقات للعاملين بالمرافق الحكومية، مراكز للاستعلام، دورات تدريبية لمسئولي دور العبادة</td>
</tr>
<tr>
<td>10</td>
<td>تقليل استهلاك الطاقة الكهربائية في المباني والمنشآت الحكومية بنسبة 15% حوالي 425 قيقاً واط ساعة حتى العام 2016 ترتفع إلى 890 قيقاً واط ساعة بنهاية العام 2020م</td>
</tr>
<tr>
<td>11</td>
<td>حسبت الوفورات على أساس تخصيص الاستهلاك بنسبة 10% في العام 2013م ترتفع إلى 15% للأعوام التالية. يظل الاستهلاك في القطاع الحكومي ثابتاً حتى العام 2020م</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
2.3 القطاع الصناعي:

2.3.1 جدول إجراءات كفاءة الطاقة

<table>
<thead>
<tr>
<th>الإجراء</th>
<th>مدة التنفيذ</th>
<th>الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>يتم توفير ساعت في شبكة التوزيع</td>
<td>سنتين</td>
<td>تحسين معامل القدرة من 0.6-8 إلى 0.95</td>
</tr>
</tbody>
</table>

2.3.2 المعلومات التفصيلية المتعلقة بالإجراءات

الطاقة المتوقعة توفيرها خلال 4 سنوات 2013-2016

بعد هذا الإجراء تشريعاً علاوة على بعض الطبعة الفنية فيه، بما أنه لا يحقق وفورات مباشرة في الطاقة فيمكن اعتباره إجراءً داعماً.

<table>
<thead>
<tr>
<th>الإجراء رقم (1)</th>
<th>م</th>
<th>الدافع لتطبيق الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>التقليل نسبة الطاقة غير الفعالة وأثرها الضار على شبكات الكهرباء.</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>تقليل الفقد الكهربائي في شبكات التوزيع نتيجة تقليل التيار المسحوب.</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
<td>تقليل الفاتورة الشهرية لأشخاص المصابين.</td>
</tr>
<tr>
<td>T4</td>
<td>1</td>
<td>خفض التحميل على الخطوط والمحولات والاستفادة من السعة المتوفرة في تقديم خدمة لزيارتين جديد</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الإجراء</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>تحسين معامل القدرة من 0.6-0.8 إلى 0.95 حتى العام 2016م</td>
<td></td>
</tr>
<tr>
<td>إلزام أصحاب المصاب بين تركيب معدات تحسين معامل القدرة وذلك بفرض تعريفة الطاقة غير الفعالة على الاحمال بعامل قدرة دون 0.95</td>
<td></td>
</tr>
<tr>
<td>العمل على رفع تعريفة الكيلوفار ساعة .</td>
<td></td>
</tr>
<tr>
<td>تuyển تأهيل شروط لتقديم الدعم الفني في مجال حساب معامل القدرة وتركيب معدات التحسين</td>
<td></td>
</tr>
<tr>
<td>يتم تنويع وتنوعية أصحاب المصاب بفوائد تركيب معدات تحسين</td>
<td></td>
</tr>
</tbody>
</table>

الخطة الوطنية للكفاءة الطاقة 2013 - 2016
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>المعامل القطر من خلال الموقع الإلكتروني للشركة السودانية لترويج الكهرباء.</td>
<td></td>
</tr>
<tr>
<td>الشركة السودانية لترويج الكهرباء المحدودة وأصحاب المصانع.</td>
<td>3</td>
</tr>
<tr>
<td>الشركة السودانية لترويج الكهرباء المحدودة والشركة السودانية لنقل الكهرباء وشركات التوليد. أصحاب المصانع وشركات المؤهلة لتركيب أجهزة تحسين معامل القطر.</td>
<td>4</td>
</tr>
<tr>
<td>يتحملها أصحاب المصانع</td>
<td>5</td>
</tr>
<tr>
<td>التكاليف الكلية</td>
<td>6</td>
</tr>
<tr>
<td>كلفة وفر</td>
<td>7</td>
</tr>
<tr>
<td>تخفيف الدعم</td>
<td>8</td>
</tr>
<tr>
<td>أصحاب المصانع</td>
<td>9</td>
</tr>
<tr>
<td>إلغاء عقوبة الطاقة غير الفعالة للأعمال ذات معامل القطر 0.95 فأعلى. وتقليل محاسبة الحمل الأقصي.</td>
<td>10</td>
</tr>
<tr>
<td>توعية أصحاب المصانع من خلال الموقع الإلكتروني للشركة ومكتبة مبيعات كبار الزبائن</td>
<td>11</td>
</tr>
<tr>
<td>رفع معامل القطر من حدود 0.6 - 0.8 إلى 0.95 يتم حساب معامل القطر لجميع المصانع شهريا. تنخفض القدرة الظاهرة لترويد 1 ميغا واط بما يعادل 200 كيلو فولت أمبير عند تحسين معامل القطر من 0.8 إلى 0.95 تنخفض القدرة الظاهرة لترويد 1 ميغا واط بما يعادل 164 كيلو فولت أمبير عند تحسين معامل القطر من 0.8 إلى 0.95 حيث أن القدرة الظاهرة لترويد 1 ميغا واط عند معامل قدرة 0.95 يساوي 1053 كيلو فولت أمبير و عند معامل قدرة 0.8 يساوي 1250 كيلو فولت أمبير و عند معامل قدرة 0.6 يساوي 1667 كيلو فولت أمبير</td>
<td>12</td>
</tr>
</tbody>
</table>
3.1 جدول إجراءات شركات التوزيع والنقل والتوليد

<table>
<thead>
<tr>
<th>الطاقة المتوقعة</th>
<th>إسم الإجراء</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 قيَّة واط ساعة</td>
<td>تخفيض الفقد في شبكات الاتصال</td>
<td>1</td>
</tr>
<tr>
<td>1470 قيَّة واط ساعة</td>
<td>تخفيض الفقد في شبكات التوزيع</td>
<td>2</td>
</tr>
<tr>
<td>8 قيَّة واط ساعة</td>
<td>إعادة تأهيل نظام التبريد بمحطة الروسبرص الكهرومائية</td>
<td>3</td>
</tr>
<tr>
<td>146 قيَّة واط ساعة</td>
<td>رفع جاهزية محطة توليد جبل أولياء - التوربينات المصفوفة</td>
<td>4</td>
</tr>
<tr>
<td>327 قيَّة واط ساعة</td>
<td>إعادة تأهيل ورفع قدرة محطة سنان الكهرومائية</td>
<td>5</td>
</tr>
<tr>
<td>879 قيَّة واط ساعة</td>
<td>خفض تكلفة إنتاج الكهرباء من محطة توليد قري</td>
<td>6</td>
</tr>
<tr>
<td>سنة واحدة</td>
<td>خفض استهلاك ملحقات التوليد الحراري</td>
<td>7</td>
</tr>
<tr>
<td>سنة واحدة</td>
<td>خفض استهلاك الوقود بالتوليد الحراري</td>
<td>8</td>
</tr>
</tbody>
</table>

1) هذين الإجراءين في 7 و 8 أعلاه سيحدد الوفر فيما بعد استكمال التحضيرات.

3.2 المعلومات التفصيلية المتعلقة بالإجراءات

3.2.1 المعلومات التفصيلية لتخفيض الفقد في شبكات النقل

<table>
<thead>
<tr>
<th>الإجراء رقم (1)</th>
<th>الدافع لتطبيق الإجراء</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>تطبيق إجراءات رفع كفاءة الطاقة في الشبكة القومية للكهرباء بتخفيض الفقد الكهربائي والذي تقع ضمن برامج أهداف الشركة السودانية لنقل الكهرباء المحدودة. تحقيق أفضل المواصفات لنقل الطاقة الكهربائية حسب الممارسات الدولية.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
تحقيق وفر في التوليد المطلوب لمقابلة الفقد الكهربائي خصوصاً وأن معظمه ينتج بالوقود الأحفوري.

التوظيف الأمثل للطاقة المنتجة من محطات التوليد الحراري مما يعكس إيجاباً في أصاح البئرية نتيجة لتقليل انبعاثات ثاني أكسيد الكربون.

تخفيف الفقد الكهربائي يحقق توفيراً في سعات شبكات نقل وتوزيع الكهرباء.

<table>
<thead>
<tr>
<th>تخفيف الفقد الكهربائي في شبكات النقل كالتالي:</th>
<th>وصف الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊗ العام 2011 : 5.3%</td>
<td>2</td>
</tr>
<tr>
<td>⊗ العام 2012 : 4.6%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2013 : 4%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2014 : 3.85%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2015 : 3.7%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2016 : 3.55%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2017 : 3.4%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2018 : 3.25%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2019 : 3.1%</td>
<td></td>
</tr>
<tr>
<td>⊗ العام 2020 : 3.0%</td>
<td></td>
</tr>
</tbody>
</table>

مراجعة وتحسين المواصفات الخاصة بمكونات الشبكة القومية للنقل بحيث تحقق الحد الأدنى من الفقد الكهربائي.

تقوية وتدعم وصيانة الخطوط والمحولات بالشبكة القومية.

التشغيل الأمثل للشبكة القومية للكهرباء بما يحقق:

تحميل الخطوط والمحولات تحميلاً مثاليً بما يحقق الحد الأدنى من الفقد الكهربائي

التشغيل الاقتصادي لمحطات الشبكة مع المحافظة على الفقد الأمثل.
تركيب عدادات طاقة ذات درجة عالية من الدقة (0.2) والتي تعتبر ذات كفاءة عالية في حساب وتسجيل الطاقة المنقولة وبالتالي النقد. عمل نظام آل ليربط عدادات الطاقة بقاعدة بيانات موحدة للاستفادة منها في تطبيقات حساب ومعالجة النقد.

<table>
<thead>
<tr>
<th>class</th>
<th>0.2</th>
</tr>
</thead>
</table>

الشركة السودانية لنقل الكهرباء المحدودة | 3 |
الشركة السودانية لنقل الكهرباء المحدودة، الشركة السودانية لتوزيع الكهرباء، شركات التوليد العاملة في الشبكة القومية. | 4 |
تكلف تسفيحة | 5 |
التكلفة الكلية | 6 |
كلفة الوفير | 7 |
تخصيص الدعم | 8 |
الإليات المالية المحفزة | 10 |
الإليات المالية المحفزة | 11 |
تقييم الوفير على مستوى القطاع | 12 |

الجهة المسؤولة عن التنفيذ

الجهات المعنية

تكلفة الوفير

تخصيص الدعم

المصادر

الإليات المالية المحفزة

التوعية

تقييم الوفير على مستوى القطاع

الإعداد الجمركي لمعدات الكهرباء الممنوحة من قبل وزارة المالية والاقتصاد الوطني.

تواغية الكوارد الفنية العاملة في تشغيل الشبكة وفي تصميم ووضع مواصفات معدات نقل الكهرباء بأهمية الفقد الكهربائي وإخضاعهم لدورات تدريبية في هذا المجال.

من المتوقع توفير 1000 قطعة واط ساعة تراكمية حتى العام 2016 وتتفترق إلى 2952 ق وس حتى العام 2020. تم قياس الفقد الكهربائي في شبكات النقل للكهرباء 2011 وبلغ 5.3% من الطاقة المستندة لنفس العام. ومن ثم تم تحديد نسبة تخفيض لكل عام كهدف لتصل النسبة إلى 3% في العام 2020.
تم حساب الوفر حسب النسبة المستهدفة لكل عام من إجمالى الطاقة المستلمة لذلك العام.
تتم المتابعة السنوية للوفر المحق من خلال قراءة عدادات الطاقة في مفاصل الشبكة.

3.2.2 المعلومات التفصيلية لتخفيض الفقد في شبكات التوزيع

<table>
<thead>
<tr>
<th>الإجراء رقم (2)</th>
<th>م</th>
<th>الدافع لتطبيق الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>تشفير وفر في التوليد المطلوب لمقابلة الفقد الكهربائي حيث أن معظمه ينتج بالوقود الأحفوري. التوظيف الأمثل للطاقة المنتجة من محطات التوليد الحراري مما يعكس إيجابية في إصلاح البيئة نتيجة لتقليل إنبعاثات ثاني أكسيد الكربون.</td>
</tr>
<tr>
<td>2</td>
<td>وصف الإجراء</td>
<td>تخفيض الفقد الكهربائي يحقق توفيراً في سعات شبكات نقل وتوزيع الكهرباء، استقرار وموثوقية الشبكة ووجود الإمداد الكهربائي بتحسين الشبكة. المساعدة في تحسين جودة الإمداد بتقليل انخفاض الجهد (voltage drop)</td>
</tr>
</tbody>
</table>

تخفيض الفقد الكهربائي في شبكات التوزيع كالآتي:

- العام 2011: 15% لـ 14.25%
- العام 2012: 13.5%
- العام 2013: 13%
- العام 2014: 12.5%
- العام 2015: 12%
- العام 2016: 15%

تسعى الشركة السودانية لتوزيع الكهرباء لنشر ثقافة تقليل الفقد
الكهرباء في شبكات التوزيع بين كافة العاملين بالشركة حيث تم الآتي:

الموصلة في التوفيق عن الفقد الكهربائي في الشركة ضمن مؤتمرات
الولايات.

متابعة تنفيذ توصيات ورشة عمل الفقد الكهربائي التي عقدت بالخريطوم
بتاريخ 21/3/2012م.

الاستمرار في زيارات الدورية لإدارة توزيع الولايات لمراجعة وتحليل
نسب الفقد الكهربائي.

وفي سبيل تحقيق أهداف الشركة لتخفيض الفقد الكهربائي في
شبكات التوزيع تخطط لتنفيذ عدة إجراءات فنية شرعت في بعضها
فعلياً:

تركيب عدادات طاقة ذات دقة عالية في نقاط عبور التيار الكهربائي في
شبكات التوزيع.33/11 ف، وربطها بالنظام الآلي لإدارة قراءة المحدود
(MMS)
للإستفادة منه لحساب ومعالجة الفقد وذلك وفق الجدول الزمني
المحدد.

تنفيذ برنامج لصيانة دورية لشبكة التوزيع.

تنفيذ برنامج لفك اختناقات الشبكة وتحسين الشبكات القديمة.

اعتماد منهجية موحدة لتحديد التحميل الأمثل للمحولات والموصلات.

الاستمرار في برنامج إثران أحمال المحولات والخطوط ضمن الأعمال
الخاصة بالتوصيلات.

تقليل استهلاك الكهرباء بمحطة التوزيع من خلال رفع كفاءة نظام
التكيف بها.

الاستمرار في الدراسات التجريبية لتحديد نسبة الفقد لبعض مكونات
الشبكة (محولات، خطوط) لوضع الإجراءات التصحيحية اللازمة.

وضع منهجية للحد من الفقد الغير فني.

<p>| الشهيرة المسئولة عن التنفيذ | 3 |</p>
<table>
<thead>
<tr>
<th>الجهات المعنية</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنظيم ورقابة الكهرباء.</td>
<td>5</td>
</tr>
<tr>
<td>تكاليف تنفيذ الإجراء</td>
<td>6</td>
</tr>
<tr>
<td>التكاليف الكلية</td>
<td>7</td>
</tr>
<tr>
<td>كلفة الوفر</td>
<td>8</td>
</tr>
<tr>
<td>تخفيف الدعم</td>
<td>9</td>
</tr>
<tr>
<td>مصدر التمويل</td>
<td>10</td>
</tr>
<tr>
<td>الأليات المالية المحفزة</td>
<td>11</td>
</tr>
<tr>
<td>التوعية</td>
<td>12</td>
</tr>
<tr>
<td>تقييم الوفر على مستوى القطاع</td>
<td>2013 - 2016</td>
</tr>
</tbody>
</table>

وزارة المواد الرائية والكهرباء، شركات توليد ونقل وتوزيع الكهرباء، جهاز تنظيم ورقابة الكهرباء.

- تكاليف تنفيذ الإجراء 88.213 مليون يورو.

- كلفة الوفر 2.6 سنت دولار / كيلو واط ساعة.

- توفير 178 قيما واط ساعة في العام 2013 ترتفع إلى 545 قيما واط ساعة في العام 2016.

- الزيادة في تكلفة الوفر 4209 سنت دولار / كيلو واط ساعة.

- توزيع الوفر 0.415 سنت دولار / كيلو واط ساعة.

- الهدف الكهربائي المحسب لكل عام مناسب إلى سنة المرجع 2011.

- في الأعوام الأولى للخطة يتم تحقيق نسب أعلى في خفض الفقد الكهربائي وتقل هذه النسبة مع تقدم سنوات الخطة.

- تقوم خدمات الطاقة المحتوية في مفاصل الشبكة في القياس الدقيق للفقد في الشبكات.

- تستخدم عدادات التواصل المردود في القياس الدقيق للفقد على مستوى الجهد 0.415 كيلو فولت.

- يتم رفع تقارير دورية عن الفقد الكهربائي في الشبكة.
3.2.3: المعلومات التفصيلية لزيادة الطاقة الإنتاجية لمحطة الورش

<table>
<thead>
<tr>
<th>الإجراء رقم (3)</th>
<th>الم</th>
</tr>
</thead>
<tbody>
<tr>
<td>تقليل فترات توقف التوربينات لصيانة أجهزة التبريد خلال أشهر الفيضان.</td>
<td>1</td>
</tr>
<tr>
<td>رفع كفاءة المحطة</td>
<td></td>
</tr>
<tr>
<td>توفير الوقود الأحفوري المطلوب لانتاج الطاقة المستهدفة من المصادر الحرارية التقليدية.</td>
<td></td>
</tr>
<tr>
<td>تقليل نسبة ثاني أكسيد الكربون المنبعثة من حرق الوقود الأحفوري.</td>
<td></td>
</tr>
</tbody>
</table>

زيادة توليد محطة الورش الكهرومكاني تستدعي تقنيات تبريد قياسية في العام 2019. وذلك بتاهيل منظومة التبريد للوحدات السبعة بعد توقفها عن طريق استحداث نظام مراقبة جديدة لمياه التبريد التي تصل من مياه الصرف في علاج يجبرها النهر خلال أشهر الفيضان خصوصاً شهري يوليو وأغسطس من كل عام.

الخطوات التي اتخذت:
- إكتمال تجهيز منظومة التبريد للوحدة رقم 2 بواسطة شركة (ANDRITZ).
- وتتم مراقبة آداء النظام الجديد للتبريد خلال الفيضان القادم لتقييمه وتوطينه في بقية الوحدات.

<table>
<thead>
<tr>
<th>الوارد المائي والكهرباء + الشركة السودانية للتوليد المائي</th>
<th>جهة المسؤولة عن التنفيذ</th>
</tr>
</thead>
<tbody>
<tr>
<td>جهة المعنية</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الوارد المائي والكهرباء + الشركة السودانية للتوليد المائي</th>
<th>الجهات المعنية</th>
</tr>
</thead>
<tbody>
<tr>
<td>جهة المعنية</td>
<td></td>
</tr>
</tbody>
</table>

الخطة الوطنية للكفاءة الطاقة 2013 - 2016
الخطة الوطنية للكفاءة الطاقية 2013 - 2016

<table>
<thead>
<tr>
<th>تتـكـالفـ تـنفيـذ</th>
<th>الإجراء</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>التكـالـيف الكلـيـة</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>كلفـة الـوـفر</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>إضافة سنوية للشبكة القومى بـمـقدـار 0.806 قـيقاً واط ساعـة في الـعام</td>
<td></td>
<td></td>
</tr>
<tr>
<td>إبتداءً من الـعام 2013 ترتفع تدريجياً لتصل إلى 5.5 قـيقاً واط ساعـة في الـعام 2019م وتستمر كذلك طبـيل اه عمر المحطة.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزارة الموارد المائية والكهرباء + الشركة السودانية للتوليد المائي</td>
<td></td>
<td></td>
</tr>
<tr>
<td>الإعـفاءات الجمركية الممنوحة من وزارة المالية والاقتصاد الوطنـي على</td>
<td></td>
<td></td>
</tr>
<tr>
<td>معدات مشاريع الشركة السودانية للتوليد المائي.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مصدر التمويل</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>الأليـاـت الماليـة</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>المحفزة</td>
<td></td>
<td></td>
</tr>
<tr>
<td>التنوعية</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>تقيـيم الـوـفر عـلـى مستوى القطاع</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

تـهـيـل دورة التبريد بـتقنية حديثة أدـى إلى زيادة إنتاج الـطاقـة من التوليد المائي مما ينتج عنه توفير وقود أحفوري بما يعادل 174 طن نفط مكاحف حتى العام 2016 وتفادي انبعاثات ثاني أكسيد الكربون 5.793 طن لتصل إلى 6,893 طن م حتى العام 2020م وتفادي انبعاثات ثاني أكسيد الكربون بما يعادل 20,040 طن لنفس الفترة.

منهجية حساب أثر تطبيق النشاط تمت على أسس المقارنة مع التوليد الحراري بنظام الدورة المردودة المستخدم بالشبكة القومية والتي تحرق وقود الـجازولين.

تم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام الـطاقـة المائية والـتوليد باستخدام الوقود الأحفوري من الشركة السودانية للتوليد المائي ومن الشركة السودانية للتوليد الحراري.
3.2.4 المعلومات التفصيلية لرفع جاهزية محطة جبل أولياء

<table>
<thead>
<tr>
<th>الإجراء رقم (4)</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>الدافع لتطبيق الإجراء</td>
<td>1</td>
</tr>
<tr>
<td>رفع الطاقة الإنتاجية لمحطة توليد التوربينات المصفوفة ببلد أولياء</td>
<td></td>
</tr>
<tr>
<td>توفير الوقود الأخشور المطلوب لانشطار الطاقة المستهدفة من المصادر الحرارية التقليدية</td>
<td></td>
</tr>
<tr>
<td>تقليل نسبة الكربون المنبعثة من حرق الوقود الأخشور</td>
<td></td>
</tr>
</tbody>
</table>

- زيادة انتاج محطة جبل أولياء المانية بما يعادل 42 قيقوواط ساعة في العام من خلال رفع جاهزية المحطة بإعادة تأهيل عدد 12 مجموعة مولدات (modules).

- الخطوات التي اتخذت:
 - إكتملت إعادة لف مولدات من أصل أربعة مولدات متعطلة أما الآخرين فهما قيد التنفيذ.
 - تم طلب قطع الغيار الأساسية الضرورية لإنجاز التأهيل اللازم للمولدات ومن المتوقع الحصول عليها بنهاية العام 2012م.
 - تعمل الشركة على تأسيس ورشة صيانة متكاملة بموقع المحطة مما يسهل عمليات الصيانة ويفصل زمن خروج المولدات من الخدمة.

وصف الإجراء

####瑞士्ठ
- وزارة الموارد المائية والكهرباء +الشركة السودانية للتوليد المائي:
 - تكاليف تنفيذ الإجراء: 1,500,000 يورو
 - الجهات المنعية:
 - الجهات المسؤولة عن التنفيذ:
 - جهة التنفيذ: وزارة الموارد المائية والكهرباء، الشركة السودانية للتوليد المائي، الشركة السودانية لنقل الكهرباء، الشركة السودانية لتوزيع الكهرباء، جهاز تنظيم ورقابة الكهرباء.
<table>
<thead>
<tr>
<th>التكلفة الكلية</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنت دولار/كيلو واط ساعة</td>
<td>48</td>
</tr>
<tr>
<td>تكلفة الوقود</td>
<td>7</td>
</tr>
<tr>
<td>21 قيماً ابتداءً من العام 2013 وترتفع إلى 42 ق وساعة سنوياً من العام 2014م</td>
<td>8</td>
</tr>
<tr>
<td>تخفيض الدعم</td>
<td>9</td>
</tr>
<tr>
<td>وزارة الموارد المائية والكهرباء + الشركة السودانية للتوليد المائي</td>
<td>10</td>
</tr>
<tr>
<td>المصدر التمويلي</td>
<td>11</td>
</tr>
<tr>
<td>الالبابات المالية المحفزة</td>
<td>12</td>
</tr>
<tr>
<td>التوعية</td>
<td>-</td>
</tr>
<tr>
<td>تقييم الوفرا على مستوى القطاع</td>
<td>-</td>
</tr>
</tbody>
</table>

رفع جاهزية المحطة (مولادات + توفير قطع غيار اساسية) يزيد من إنتاج المحطة مما ينتج عنه توفير ما يعادل 36,896 طن نفط مكافئ في الفترة 2013-2016 وتفادي إنبعاثات ثاني أكسيد الكربون بما يعادل 107,264 طن لنفس الفترة. تصل إلى 79,062 طن م إضافة إلى 229,852 طن ثاني أكسيد الكربون للفترة من 2017-2020 م. منهجية حساب أثر تطبيق النشاط تتم على أساس المقارنة مع التوليد الحراري بنظام الدورة المزودة المستخدم بالشبكة القومية والتي تحرق وقود الجازولين.

تم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام الطاقة المائية والتوليد باستخدام الوقود الأحفوري من الشركة السودانية للتوليد المائي ومن الشركة السودانية للتوليد الحراري.
<table>
<thead>
<tr>
<th>الإجراء رقم (5)</th>
<th>المشروع</th>
<th>الوصف لتطبيق الإجراء</th>
</tr>
</thead>
</table>
| 1 | | إطلاق الدكتور لسد ستار | إنتاج 26 ميجاوات |}
| | | السداعو لتطبيقات | 165 ميجاوات/ساعة في العام، باستخدام طاقة المياه |}
| | | المحاولة التي اتخاذها: | واستخدام توربينات ذات كفاءة عالية |}
| | | يتم إعداد الدراسة الفنية لإعادة التثبيت في نوفمبر 2011م | خطة التخلي عن استخدام الاتصالات، لاستخدام الاتصالات الأخرى |}
| | | يجري إعداد مستندات العلاج بواسطة الإستشاري لامير الألمانية | وقد أُصدرت 일반ية للمساعدة في أبريل 2012م |}
| | | تجري الاستعدادات لطرح العلاج لاختيار الشركة المنفذة. | |}
| 2 | | مجموعة الوزارء والمذابح | |}
| | | وزارة الموارد المائية والكهرباء + الشركة السودانية للتواجد المائي | |}
| 3 | | جهة التنفيذ | |}
| | | وزارة الموارد المائية | |}
| 4 | | الجهات المعنيه | |}
| | | الشركة السودانية للتواجد المائي | |}
| 5 | | تكلفة تنفيذ الإجراء | 45 مليون يورو |}
| | | كلفة الوفر | 3 سنوات/ كيلو واط ساعة |}

الحزمة الوطنية لكافأة الطاقة 2013 - 2016
الخطة الوطنية لكفاءة الطاقة 2013 - 2016

3.2.6

المعلومات التفصيلية لخفض تكلفة إنتاج محطة توليد قري 1

<table>
<thead>
<tr>
<th>الإجراء رقم (6)</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
مقارنة بالغازولين (Gas Oil)

التقارب في مواصفات النوعين من الوقود من حيث المحتوى الحراري (Calorific Value)

انخفاض تكلفة التغيير في معدات المحطة لحرق الغازولين الثقيل بدلًا عن الغازولين المتبقي من العمر الافتراضي للمحطة بعد كافياً لتغيير النظام

زيادة المردود الحراري للغازولين الثقيل باستخدام جزء من الوقود الذي كان يحرق في محطة توليد الشهيد البخارية بكفاءة حوالي 30% لتتفوق الكفاءة إلى حوالي 45% في الدورة المركبة بمحطة قري 1

وها هي الإجراءات المتخذة:

- أجريت دراسة جدوى للمشروع بواسطة شركة هاربين الصينية
- وأجريت من قبل الشركة
- تم توقيع عقد تنفيذ المشروع مع شركة هاربين الصينية
- ومن المتوقع تفعيل العقد خلال العام 2012

الجهة المسئولة عن التنفيذ

الجهات المعنية

تكلفة تنفيذ الإجراء

تكلفة الكلية

تخفيف الدعم

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>تغيير نظام الوقود من غازولين إلى غازولين ثقيل بمحطة توليد قري 1</td>
</tr>
<tr>
<td>2</td>
<td>الوصف الإجراء</td>
</tr>
<tr>
<td>3</td>
<td>الشركة السودانية للتوليد الحراري</td>
</tr>
<tr>
<td>4</td>
<td>وزارة الموارد المائية والكهرباء، الشركة السودانية للتوليد الحراري، الجهاز الفني لتنظيم ورقابة الكهرباء</td>
</tr>
<tr>
<td>5</td>
<td>7 مليون دولار</td>
</tr>
<tr>
<td>6</td>
<td>تكلفة تنفيذ الإجراء</td>
</tr>
<tr>
<td>7</td>
<td>0.314 سنتر دولار / كيلو واط ساعة</td>
</tr>
<tr>
<td>8</td>
<td>تخفيف الدعم إلى 0.0687 جنيه سوداني</td>
</tr>
</tbody>
</table>

الخطة الوطنية للكفاءة الطاقية 2013 - 2016
مصدر التمويل	9
الإعانات الجمركية الممنوحة من وزارة المالية والإقتصاد الوطني | 10
التيود على النظام الجديد في التشغيل والصيانة | 11
تقدير الوفور على مستوى القطاع | 12

المعلومات التفصيلية لخفض إستهلاك ملحقات التوليد الحراري

الdong لل دائما على أساس أن محطة توليد قري 1 ستعمل كعمل أساسي
بعد تغيير الوقود.

<table>
<thead>
<tr>
<th>رقم الإجراء (7)</th>
<th>م</th>
<th>التشمل الأمثل لملحقات محطات التوليد الحراري باقل إستهلاك لكهرباء</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>الدافع لتطبيق الإجراء</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>وصف الإجراء</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>الهيئة المسؤولة عن التنفيذ</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>الجهات المعنية</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>تكاليف تنفيذ الإجراء</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>التكاليف الكلية</td>
</tr>
</tbody>
</table>

3.2.7

تم تقديم الوفور على أساس أن محطة توليد قري 1 ستعمل كعمل أساسي
بعد تغيير الوقود.

الشركسة السودانية للتوليد الحراري

الشركسة السودانية للتوليد الحراري

الجهار الفني للتنظيم ورقابة الكهرباء

حوالي 000200 جنيه سوداني
المعلومات التفصيلية لخفض استهلاك الوقود بالمحطات الحرارية

هذا الإجراء لا يمكن حساب الوفر له في الوقت الحاضر بسبب الحاجة إلى تحضيرات تشتمل تركيبة عدادات وقود لكل وحدات التوليد الحراري ويمكن اعتباره إجراءاً دائماً حتى إكمال التحضيرات.

الإجراء رقم (8)	المترتبة على
تحسين معدل استهلاك الوقود بالوحدات الحرارية	السداسي لتطبيق الإجراء

甄选 معدلاً استهلاك الوقود بالوحدات الحرارية

- تحقيق وفورات في الوقود من خلال خفض معدل استهلاك الوقود للوحدات الحرارية
- رفع كفاءة وحدات التوليد الحراري من خلال زيادة المردود الحراري للوقود
- تركيب عدادات استهلاك الوقود لكل وحدة توليد حراري
- تأسيس سجلات دقيقة لاستهلاك الوقود
- إجراء دراسة لكل وحدة لحساب المعدل الحقيقي للاستهلاك وتطبيق الإجراءات الكفيلة بالوصول به للمعدل المعياري
- إصدادات نظام تحليل آلية لقياس الكفاءة وحساب تكلفة إنتاج الوحدة الكهربائية مباشرة عن طريق الحاسوب

الجهة المسؤولة عن التنفيذ

- الشركة السودانية للتوليد الحراري
<table>
<thead>
<tr>
<th>الجهات المعنية</th>
<th>التكاليف تنفيذ الإجراء</th>
<th>التكاليف الكلية</th>
<th>تحدد لاحقاً</th>
<th>تخفض الدعم</th>
</tr>
</thead>
<tbody>
<tr>
<td>الشركة السودانية للنفود الحراري، الجهاز الفني لتنظيم وإنارة الكهرباء</td>
<td>حوالي 600,000 دولار</td>
<td>كلفة الوفر</td>
<td>مصدر التمويل</td>
<td>تدريب العاملين على التشغيل الأمثل للوحدات</td>
</tr>
<tr>
<td></td>
<td></td>
<td>توعية</td>
<td>نشر ثقافة أهمية خفض استهلاك الوقود بين العاملين بالمحطات</td>
<td>تقييم الوفر على مستوى القطاع</td>
</tr>
</tbody>
</table>

الملاحظات:
- تكاليف تنفيذ الإجراء: حوالي 600,000 دولار.
- التكاليف الكلية: كلفة الوفر.
- تخفض الدعم: مصدر التمويل.
- تدريب العاملين: توعية ونشر ثقافة.
- تقييم الوفر: على مستوى القطاع.
4.1 جدول إجراءات كفاءة الطاقة المتجددة:

<table>
<thead>
<tr>
<th>الرقم</th>
<th>اسم الإجراء</th>
<th>الطاقة المتوقع توفيرها خلال 4 سنوات 2013-2016</th>
<th>مدة التنفيذ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>محطة توليد رياح نقل</td>
<td>137,417 طن نفط مكافئ</td>
<td>سنتين</td>
</tr>
<tr>
<td>2</td>
<td>محطة توليد رياح نبالا</td>
<td>46,164 طن نفط مكافئ</td>
<td>سنتين</td>
</tr>
<tr>
<td>3</td>
<td>محطة الخرطوم لتوليد بالطاقة الشمسية</td>
<td>13,298 طن نفط مكافئ</td>
<td>سنة</td>
</tr>
<tr>
<td>4</td>
<td>محطة توليد نبالا بالطاقة الشمسية</td>
<td>8,445 طن نفط مكافئ</td>
<td>سنة</td>
</tr>
<tr>
<td>5</td>
<td>محطة توليد الفاشر بالطاقة الشمسية</td>
<td>4,862 طن نفط مكافئ</td>
<td>سنة</td>
</tr>
<tr>
<td>6</td>
<td>محطة توليد الجنينة بالطاقة الشمسية</td>
<td>3,510 طن نفط مكافئ</td>
<td>سنة</td>
</tr>
<tr>
<td>7</td>
<td>مشروع كهرباء الريف</td>
<td>11,113 طن نفط مكافئ</td>
<td>20 سنة</td>
</tr>
</tbody>
</table>
4.2 المعلومات التفصيلية المتعلقة بالإجراءات
4.2.1 المعلومات التفصيلية لمحطة طاقة الرياح - دنقلا

<table>
<thead>
<tr>
<th>الإجراء رقم (1)</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>التوليد باستخدام طاقة الرياح من منطقة دنقلا شمال السودان</td>
<td>1</td>
</tr>
<tr>
<td>• إستغلال سرعات الرياح المتاحة في منطقة دنقلا في توليد طاقة كهربائية.</td>
<td></td>
</tr>
<tr>
<td>• توفير الوقود الأحفوري المطلوب لانتاج الطاقة المستهدفة من المصادر الحرارية التقليدية.</td>
<td></td>
</tr>
<tr>
<td>• المساهمة في استقرار الشبكة الكهربائية للولاية الشمالية</td>
<td></td>
</tr>
<tr>
<td>• تقليل نسبة ثاني أكسيد الكربون المنبعثة من حرق الوقود الأحفوري.</td>
<td></td>
</tr>
<tr>
<td>• مواكبة التقنية الجديدة في مجال طاقة الرياح والتدريب عليها</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وصف الإجراء</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>توليد 100 MW باستخدام طاقة الرياح</td>
<td></td>
</tr>
<tr>
<td>الخطوات التي اتخذت:</td>
<td></td>
</tr>
<tr>
<td>• تم إعداد بروتوكول الرياح بواسطة الاستشاري الألماني (لامبر)</td>
<td></td>
</tr>
<tr>
<td>• تم إعداد دراسة الجدوى بواسطة الاستشاري الألماني (لامبر)</td>
<td></td>
</tr>
<tr>
<td>• تم إعداد مستندات المشروع بواسطة الاستشاري الألماني (لامبر)</td>
<td></td>
</tr>
<tr>
<td>• تم تخصيص المساحة لموقع المشروع</td>
<td></td>
</tr>
</tbody>
</table>

الجهة المسؤولة عن التنفيذ	3	
الجهة المعنية	4	
وزارة الموارد المائية والكهرباء		
وزارة الموارد المائية والكهرباء، الشركة السودانية لترويج الكهرباء، جهاز تنظيم ورقابة الكهرباء، حكومة الولاية الشمالية		

| كلفة الورفر | 7 |
| 11.4 سنو دولا / كيلو واط ساعة |

<p>| التكلفة التنفيذية للإجراء | 5 |
| 213 مليون دولار |</p>
<table>
<thead>
<tr>
<th>تخفيف الدعم</th>
<th>مصدر التمويل</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزارة الموارد المائية والكهرباء + الجهات المانحة</td>
<td></td>
</tr>
</tbody>
</table>

الإعفاءات الجمركية الممنوحة من وزارة المالية والاقتصاد الوطني على معدات مشاريع الطاقة المتجددة.

حملات ترويجية للمشروع عن طريق الدعوة والسمنرات وكتب الترويج.

<table>
<thead>
<tr>
<th>الأليات المالية المحفزة</th>
</tr>
</thead>
<tbody>
<tr>
<td>التوعية</td>
</tr>
</tbody>
</table>

تقييم الوفير على مستوى القطاع.

4.2.2 المعلومات التفصيلية لمحطة طاقة الرياح - نيلالا

<table>
<thead>
<tr>
<th>توليد باستخدام طاقة الرياح بمنطقة نيلالا غرب السودان</th>
<th>الإجراء رقم (2)</th>
<th>الدافع لتطبيق الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>إستغلال سرعات الرياح العالية المتاحة في منطقة نيلالا في توليد طاقة كهربائية.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>تغطية الجزء في الإمداد الكهربائي الذي تعاني منه مدينة نيلالا وضواحيها.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>العمل على استقرار الإمداد الكهربائي بالمنطقة والتغلب على مشاكل ترحيل الوقود.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>الوصف الإجراء</td>
<td>الوصف الإجراء</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>توليد 20 MW باستخدام طاقة الرياح</td>
<td>توليد 20 MW باستخدام طاقة الرياح</td>
<td></td>
</tr>
<tr>
<td>الخطوات التي اتخذت:</td>
<td>الخطوات التي اتخذت:</td>
<td></td>
</tr>
<tr>
<td>• تم إعداد أطلس الرياح بواسطة الاستشاري الألماني (لامير)</td>
<td>• تم إعداد أطلس الرياح بواسطة الاستشاري الألماني (لامير)</td>
<td></td>
</tr>
<tr>
<td>• تم إعداد دراسة الجدوى بواسطة الاستشاري الألماني (لامير)</td>
<td>• تم إعداد دراسة الجدوى بواسطة الاستشاري الألماني (لامير)</td>
<td></td>
</tr>
<tr>
<td>• تم إعداد مستندات المشروع بواسطة الاستشاري الألماني (لامير)</td>
<td>• تم إعداد مستندات المشروع بواسطة الاستشاري الألماني (لامير)</td>
<td></td>
</tr>
<tr>
<td>يجري العمل على تخصيص المساحة لموقع المشروع</td>
<td>يجري العمل على تخصيص المساحة لموقع المشروع</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الوصف الإجراء</th>
<th>الوصف الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>الكيفية المستخدمة</td>
<td>الكيفية المستخدمة</td>
</tr>
<tr>
<td>• حـوزة الموارد المائية والكهرباء</td>
<td>• حـوزة الموارد المائية والكهرباء</td>
</tr>
<tr>
<td>• وزارة الموارد المائية والكهرباء، الشركـة السودانية لتنور يـن الكهـرباء، جهاز تنظيم ورقابة الكهربـاء، حكومة ولاية جنوب دارفور</td>
<td>• وزارة الموارد المائية والكهرباء، الشركـة السودانية لتنور يـن الكهـرباء، جهاز تنظيم ورقابة الكهربـاء، حكومة ولاية جنوب دارفور</td>
</tr>
<tr>
<td>التكاليف التنفيذية</td>
<td>التكاليف التنفيذية</td>
</tr>
<tr>
<td>الإجراء</td>
<td>الإجراء</td>
</tr>
<tr>
<td>• حوالي 45 مليون دولار</td>
<td>• حوالي 45 مليون دولار</td>
</tr>
<tr>
<td>التكاليف الكلية</td>
<td>التكاليف الكلية</td>
</tr>
<tr>
<td>• 11.4 سنت دولار / كيلو واط ساعة</td>
<td>• 11.4 سنت دولار / كيلو واط ساعة</td>
</tr>
<tr>
<td>• 71.83 قبترإواط ساعة في العام إبتداءً من العام 2015</td>
<td>• 71.83 قبترإواط ساعة في العام إبتداءً من العام 2015</td>
</tr>
<tr>
<td>• تخفيف الدعم</td>
<td>• تخفيف الدعم</td>
</tr>
<tr>
<td>• مصـدر التمويل</td>
<td>• مصـدر التمويل</td>
</tr>
<tr>
<td>• ال>alertات المالية المحفزة</td>
<td>• ال>alertات المالية المحفزة</td>
</tr>
<tr>
<td>• حملات ترويجية للمشروع عن طريق الورش والمستمرات وكتب الترويج</td>
<td>• حملات ترويجية للمشروع عن طريق الورش والمستمرات وكتب الترويج</td>
</tr>
<tr>
<td>• قمـيـم الـوفر على مستوى القطاع</td>
<td>• قمـيـم الـوفر على مستوى القطاع</td>
</tr>
</tbody>
</table>

- توفير الوقود الأخفوري المطلوب لإنتاج الطاقة المستهدفة من المصادر الحرارية التقليدية.
- تقليل نسبة ثاني أكسيد الكربون المنبعثة من حرق الوقود الأحفوري.
- مواكبة التقنية الجديدة في مجال طاقة الرياح والتدريب عليها.

الخطة الوطنية للكفاءة الطاقية 2013 - 2016
الخطوة الوطنية للكفاءة الطاقية 2013 - 2016

منهجية حساب آثار تطبيق النشاط تتم على أساس المقارنة مع التوليد الحراري بالديزل المستخدم الآن بالمنطقة.

تم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام طاقة الرياح والتوليد باستخدام الوقود الأحفوري من الإدارة المختصة بوزارة الموارد المائية والكهرباء ومن الشركة السودانية للتوليد الحراري.

3.2.3 المعلومات التفصيلية لمحطة الطاقة الشمسية - الخرطوم

<table>
<thead>
<tr>
<th>الإجراء رقم (3)</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>توليد باستخدام الطاقة الشمسية بمنطقة الباقير جنوب الخرطوم</td>
<td>1</td>
</tr>
<tr>
<td>العمل على استقرار الإمداد الكهربائي بالمنطقة.</td>
<td>السداق لتطبيق الإجراء</td>
</tr>
<tr>
<td>توفير الوقود الأحفوري المطلوب لإنتاج الطاقة المستهدفة من المصادر الحرارية التقليدية.</td>
<td></td>
</tr>
<tr>
<td>تقليل نسبة ثاني أكسيد الكربون المنبعثة من حرق الوقود الأحفوري.</td>
<td></td>
</tr>
<tr>
<td>مواكبة التقنية الجديدة في مجال الطاقة الشمسية والتدريب عليها</td>
<td></td>
</tr>
<tr>
<td>توليد 10 MW باستخدام تقنية الخلايا الضوئية.</td>
<td>وصف الإجراء</td>
</tr>
<tr>
<td>الخطوات التي اتخذت:</td>
<td></td>
</tr>
<tr>
<td>تم إعداد أطلس الطاقة الشمسية بواسطة الاستثماري الألماني (لاماير)</td>
<td></td>
</tr>
<tr>
<td>تم إعداد دراسة الجدوى بواسطة الاستثماري (لاماير)</td>
<td></td>
</tr>
<tr>
<td>مستندات المشروع قيد الإعداد بواسطة الاستثماري الألماني</td>
<td></td>
</tr>
<tr>
<td>الرقم</td>
<td>القائمة</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>تخصيص المساحة لموقع المشروع بنسبة 90%</td>
</tr>
<tr>
<td>2</td>
<td>gouvernment</td>
</tr>
<tr>
<td>3</td>
<td>الجهة المسؤولة عن التنفيذ</td>
</tr>
<tr>
<td>4</td>
<td>الجهات المعنية</td>
</tr>
<tr>
<td>5</td>
<td>تكاليف تنفيذ الإجراء</td>
</tr>
<tr>
<td>6</td>
<td>التكاليف الكلية</td>
</tr>
<tr>
<td>7</td>
<td>كلفة الوقتر</td>
</tr>
<tr>
<td>8</td>
<td>تخفيف الدعم</td>
</tr>
<tr>
<td>9</td>
<td>مصدر التمويل</td>
</tr>
<tr>
<td>10</td>
<td>الإليات المالية المحفزة</td>
</tr>
<tr>
<td>11</td>
<td>التوعية</td>
</tr>
<tr>
<td>12</td>
<td>تقييم الوقتر على مستوى القطاع</td>
</tr>
</tbody>
</table>

- تم استخدام الطاقة الشمسية بدلاً عن الوقود ينتج عنه توفير ما يعادل 13,298 طن نفط مكافئ في الفترة 2013-2016 وتفادي إنبعاثات ثاني أكسيد الكربون بما يعادل 38,662 طن لنفس الفترة لتصل إلى 31,030 طن مع إضافة إلى 90,211 طن ثاني أكسيد الكربون للفترة من 2017-2020.
- منهجية حساب أثر تطبيق النشاط تمثل على أساس المقارنة مع التوليد الحراري بنظام الدورة المزودة المستخدم الآن بالشبكة القومية والتي تحرق وقود الجازولين.
- تم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام الطاقة الشمسية والتوليد باستخدام الوقود الأحفوري من الإدارة المختصة بوزارة الموارد المائية والكهربراء ومن الشركة السودانية للتوليد الحراري.
<table>
<thead>
<tr>
<th>الإجراء رقم (4)</th>
<th>م</th>
<th>الوصف الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>توليد واستخدام الطاقة الشمسية بمنطقة نيالا غرب السودان</td>
<td>السدأع لتطبيق الإجراء</td>
</tr>
<tr>
<td>2</td>
<td>توليد 5 MW باستخدام تقنية الخلايا الكهروضوئية PV</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>وزارة الموارد المائية والكهرباء</td>
<td>الجهة المسؤولة عن التنفيذ</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>الجهات المعنية</td>
</tr>
</tbody>
</table>

الخطوات التي اتخذت:
- تم إعداد أطلس الطاقة الشمسية بواسطة الاستشاري الألماني (لامير)
- تم إعداد دراسة الجدوى بواسطة الاستشاري الألماني (لامير)
- مستندات المشروع قيد الإعداد بواسطة الاستشاري الألماني (لامير)
- المساحة المطلوبة لعمل المشروع قيد التخصيص

الإجراءات:
- الاستفادة من الإشعاع الشمسي المتاح بالمنطقة.
- تخطيط المعجز في الإمداد الكهربائي الذي يتعانى منه مدينة نيالا.
- تغطية وﺿايعها.
- العمل على الاستقرار الإمداد الكهربائي بالمنطقة والتغلب على مشاكل ترحيل الوقود.
- توفير الوقود الاحفوري المطلوب لإنتاج الطاقة المستهدفة من المصادر الحرارية التقليدية.
- تقليل نسبة ثاني أكسيد الكربون المنبعثة من حرق الوقود الأحفوري.
- مواكبة التقنية الجديدة في مجال الطاقة الشمسية والتدريب عليها.
تتراوح من 10 إلى 0.8 مليار دولار حسب العروض المباشرة حاليًا وسوف تحدد التكلفة الحقيقية بعد التعاقد

<table>
<thead>
<tr>
<th>تكاليف تنفيذ الإجراء</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>التكاليف الكلية</td>
<td>6</td>
</tr>
<tr>
<td>كلفة الوقود</td>
<td>7</td>
</tr>
<tr>
<td>تخفيف الدعم</td>
<td>8</td>
</tr>
<tr>
<td>مصدر التمويل</td>
<td>9</td>
</tr>
<tr>
<td>الديون المالية</td>
<td>10</td>
</tr>
<tr>
<td>التوجيه</td>
<td>11</td>
</tr>
<tr>
<td>تقييم الوقود على مستوى القطاع</td>
<td>12</td>
</tr>
</tbody>
</table>

الإنتاج السنويinton: 8,445 طن نفط مكافئ في الفترة 2013-2016 متضمنة إيداعات ثاني أكسيد الكربون بما يعادل 24,550 طن لنفس الفترة. لتصبح إلى 19,704 طن إضافة إلى 57,284 طن ثاني أكسيد الكربون للفترة من 2017-2020م. منهجية حساب أثر تطبيق التنشيط تمثل على أساس المقارنة مع التوليد الحراري بالديزل المستخدم الآن بالمنطقة. يتم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام الطاقة الشمسية والتوليد باستخدام الوقود الأحفوري من الإدارة المختصة بوزارة الموارد المائية والكهربائية ومن الشركة السودانية للتوليد الحراري.

4.2.5 المعلومات التفصيلية لمحطة الطاقة الشمسية الفاخر

<table>
<thead>
<tr>
<th>توليد باستخدام الطاقة الشمسية بمنطقة الفاخر غرب السودان</th>
<th>الإجراء رقم (5)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>الإستفادة من الإشعاع الشمسي المتاح بالمنطقة.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تغطية العجز في الإعداد الكهربائي الذي تعاين منه مدينة الفاخر وضواحيها.</td>
<td>الدافع لتطبيق الإجراء</td>
<td>1</td>
</tr>
</tbody>
</table>

الخطة الوطنية للكفاءة الطاقة 2013 - 2016
العمل على استقرار الإمداد الكهربائي بالمنطقة والتغلب على
مشكلات ترحيل الوقود
• توفير الوقود الديمغرافي المطلوب لإنتاج الطاقة المستهدفة من
المصادر الحرارية التقليدية.
• تقليل نسبة ثاني أكسيد الكربون المنبعثة من حرق الوقود
الأحفوري.
• مواكبة التقنية الجديدة في مجال الطاقة الشمسية والتدريب
عليها

<table>
<thead>
<tr>
<th>وصف الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>توليد 3 MW باستخدام تقنية الخلايا الكهروضوئية PV</td>
</tr>
</tbody>
</table>
| الخطوات المتخذة:
 • تم إعداد اطلس الطاقة الشمسية بواسطة الاستشاري الألماني |
 • تم إعداد دراسة الجدوى بواسطة الاستشاري الألماني |
 • مستندات المشروع قبل الإعداد بواسطة الاستشاري الألماني |
 • تم تخصيص المساحة المطلوبة لعمل المشروع |

<table>
<thead>
<tr>
<th>الجهات المسؤولة عن التنفيذ</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزارة الموارد المائية والكهرباء</td>
</tr>
<tr>
<td>وزارة الموارد المائية والكهرباء، الشركة السودانية لتوزيع الكهرباء، جهاز</td>
</tr>
<tr>
<td>تنظيم ورقابة الكهرباء، حكومة ولاية شمال دارفور</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>التكاليف الكلية</th>
</tr>
</thead>
<tbody>
<tr>
<td>تتراوح من 6 مليون دولار إلى 12.48 مليون دولار حسب العروض المباشرة</td>
</tr>
<tr>
<td>حالياً وسوف تحدد التكلفة الحقيقية بعد التعاقد</td>
</tr>
<tr>
<td>التكاليف الكلية</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>الكلفة الوفرة</td>
</tr>
<tr>
<td>12 - 16 سنت دولار/كيلو واط ساعة</td>
</tr>
<tr>
<td>تخفيض الدعم</td>
</tr>
<tr>
<td>5.78 قيتمواطن ساعة في العام إبتداءً من العام 2014</td>
</tr>
<tr>
<td>المصدر الممول</td>
</tr>
<tr>
<td>وزارة الموارد المائية والكهرباء + الجهات المانحة</td>
</tr>
</tbody>
</table>
الإعانات الجمركية الممنوحة من وزارة المالية والاقتصاد الوطني على معدات مشاريع الطاقة المتجددة.

<table>
<thead>
<tr>
<th>الإلياف المالية المحزمة</th>
<th>التوعية</th>
<th>تقييم الوفر على مستوى القطاع</th>
</tr>
</thead>
<tbody>
<tr>
<td>حملات ترويجية للمشروع عن طريق الورش والندوات وكتب الترويج</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

استخدام الطاقة الشمسية بدلاً عن الوقود الأحفوري ينتج عنه توفير ما يعادل 4,862 طن نفط مكافئ في الفترة 2013-2016 وتفادى انبعاثات ثاني أكسيد الكربون بما يعادل 14,135 طن لنفس الفترة. لتصل إلى 11,344 طن م إضافة إلى 32,981 طن ثاني أكسيد الكربون للفترة من 2017-2020 م.

منهجية حساب أثر تطبيق النشاط تمت على أساس المقارنة مع التوليد الحراري بالديزل المستخدم الآن بالمنطقة.

تم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام الطاقة الشمسية والتوليد باستخدام الوقود الأحفوري من الإدارة المختصة بوزارة الموارد المائية والكهرباء ومن الشركة السودانية للتوليد الحراري.

4.2.6 المعلومات التفصيلية لمحطة الطاقة الشمسية - الجينية

<table>
<thead>
<tr>
<th>توليد باستخدام الطاقة الشمسية بمنطقة الجينية غرب السودان</th>
<th>الإجراء رقم (6)</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>الإستفادة من الإشعاع الشمسي المتوفر.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>العمل على استقرار الإمداد الكهربائي بالمنطقة والتغلب على مشاكل ترحيل الوقود</td>
<td></td>
<td></td>
</tr>
<tr>
<td>توفير الوقود الأحفوري المطلوب لإنتاج الطاقة المستهدفة من المصادر الحرارية التقليدية.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تقليل ثاني أكسيد الكربون المنبعث من حرق الوقود.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مكافحة التكنولوجيا الجديدة في مجال الطاقة الشمسية والتدريب عليها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>الوصف الإجراء</td>
<td>رابط االاستثمار</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>توليد 2 MW باستخدام تقنية الخلايا الكهرووضية PV</td>
<td>P.V</td>
<td></td>
</tr>
<tr>
<td>الخطوات التي اتخذت:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تم إعداد اطلاع الطاقة الشمسية بواسطة الاستثماري الألماني (ألمانيا)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تم إعداد دراسة الجدوى بواسطة الاستثماري الألماني (ألمانيا)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مستندات المشروع قيد الإعداد بواسطة الاستثماري الألماني (المانيا)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>جاري تعديل الموقع بناء على رأي الاستثماري (ألمانيا)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الهيئة المسؤولة عن التنفيذ</th>
<th>الجهات المعنية</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزارة الموارد المائية والكهرباء</td>
<td></td>
</tr>
<tr>
<td>وزارة الموارد المائية والكهرباء ، الشركة السودانية لتوزيع الكهرباء ، جهاز تنظيم ورقابة الكهرباء ، حكومة ولاية غرب دارفور</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>التكاليف الكلية</th>
<th>كلفة الوقود</th>
</tr>
</thead>
<tbody>
<tr>
<td>تتراوح من 4 إلى 8.32 مليون دولار حسب العروض المباشرة حاليًا وسوف تحدد التكلفة الحقيقية بعد التعاقد</td>
<td>12 - 16 سنت دولار / كيلو واط ساعة</td>
</tr>
</tbody>
</table>

تخفض الدعم	مصادر التمويل	الإعفاءات الجمركية الممنوحة من وزارة المالية والاقتصاد الوطني على معدات مشاريع الطاقة المتجددة	التوجيه	جميل	التصويت على مستوى القطاع	
3.504 قيراطاط ساعة في العام 2014						
وزارة الموارد المائية والكهرباء + الجهات المانحة						
الإعفاءات الجمركية الممنوحة من وزارة المالية والاقتصاد الوطني على						
معدات مشاريع الطاقة المتجددة						
حملات ترويجية للمشروع عن طريق الورش والندوات وكتب الترويج						
استخدام الطاقة الشمسية بدلاً عن الوقود الأحفوري ينتج عنه توفير ما يعادل 3,510 طن نفط مكافئ في الفترة 2013- 2016 وتفادي إنبعاثات ثاني أكسيد الكربون بما يعادل 10,203 طن للنفس الفترة. يصل إلى 8,189,818 طن م إضافة إلى 23,807 طن ثاني أكسيد الكربون للفترة من 2017-2020						
منهجية حساب أثر تطبيق النشاط تمت على أساس المقارنة مع التوليد الحرجالي بالديزل المستخدم الآن بالمنطقة.

تم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام الطاقة الشمسية والتوليد باستخدام الوقود الاحترافي من الإدارة المختصة بوزارة الموارد المائية والكهرباء ومن الشركة السودانية للتوليد الحراري.

4.2.7 المعلومات التفصيلية لمشروع كهرباء الريف

<table>
<thead>
<tr>
<th>الإجراء رقم (7)</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>المدافوع التطبيق</td>
<td>1</td>
</tr>
<tr>
<td>أجراء الهدف</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وصف الإجراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>توليد باستخدام الطاقة الشمسية في الريف</td>
</tr>
</tbody>
</table>

- توصيل الكهرباء للقرى البعيدة عن الشبكة والتي تزيد تكلفة توصيل الكهرباء لها عن الشبكة عن 30 سنت دولار / كيلوواط ساعة، والتي لا توقع أن تصل إليها الشبكة في القريب العاجل.

- نشر 1.1 مليون نظام طاقة شمسية (PV) منزلي خالص العشرين عاماً القادمة (2012-2031).

- ساعات الأنظمة هي:
 - 100W ,AC لتشغيل (3 لمبات إنارة، تلفزيون، راديو، وشحن الهاتف النقال).
 - 50W ,DC لتشغيل (3 لمبات إنارة).

- تم عمل دراسة جدوى مبتدئة بواسطة بجري العامل حالياً للتعاقد مع جهة إستشارية متخصصة لعمل دراسة جدوى تفي بمتطلبات التمويل لدى الجهات المهمولة والمانحة من بنوك وغيرها.

- تم التواصل مع شركة صينية متخصصة إلى تصنيع مؤقت (Timer) بمواصفات خاصة (تتم برمجته بحيث يقوم بفصل الكهرباء كل ثلاثين يوماً ليعود التشغيل بواسطة كود يتم منحه للمستفيد بعد سداد الفصل الشهري للنظام لضمان تسديد الفصل الشهري).

- يجري حالياً الترتيب لتنفيذ مشروع رياضي السودانية لتوزيع الكهرباء وهو عبارة عن 100 وحدة سعة 100 واط بها
المؤقت الذي تم تصنيبه وسيتم تجريبته في مجموعة من القرى في 4
ولايات للتأكد من فاعلية نظام التحويل (المؤقت والإقامة التحضير).
ومعمر القدرة المالية للمواطنين في عملية السداد.
(ستقوم شركة التوزيع ببناء دور المرور والمحصل).
تم مبدئي تحديد بعض جهات التمويل التي طلبت دراسة جدوى تفصيلية.

<table>
<thead>
<tr>
<th>الجهات المسئولة عن التنفيذ</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>الجهات المعنية</td>
<td>4</td>
</tr>
<tr>
<td>التكاليف تنفيذ الإجراء</td>
<td>5</td>
</tr>
<tr>
<td>التكاليف الكلية</td>
<td>6</td>
</tr>
<tr>
<td>كافة الوفر</td>
<td>7</td>
</tr>
<tr>
<td>تخفيف الدعم</td>
<td>8</td>
</tr>
<tr>
<td>مصدر التمويل</td>
<td>9</td>
</tr>
<tr>
<td>الإعفاءات الجمركية الممنوحة من وزارة المالية والاقتصاد الوطني على معدات مشاريع الطاقة الشمسية.</td>
<td>10</td>
</tr>
<tr>
<td>التوعية</td>
<td>11</td>
</tr>
<tr>
<td>تقييم الوفر على مستوى القطاع</td>
<td>12</td>
</tr>
</tbody>
</table>

الإياتية المالية المحفزة

الموارد المائية والكهرباء،

حوالي 400 مليون دولار

27 سنت دولار / كيلو واط ساعة

 الإمكانيات البحرية الممنوحة من وزارة المالية والاقتصاد الوطني على معدات مشاريع الطاقة الشمسية.

الموارد الطاقة الشمسية

الموارد المائية والكهرباء،

لاستخدام الطاقة الشمسية بدلاً عن الوقود الاحفوري ينتج عنه توفير ما يعادل 5748 طن نفطي مكافئ بنهاية العام 2016م وتقادم انبثاق ثاني أكسيد الكربون بما يعادل 16712 طن

منهجية حساب أثر تطبيق النشاط تم على أساس المقارنة مع التوليد الحراري بالديزل المستخدم الآن بالمناطق المماثلة.

تم جمع المعلومات الخاصة بالمقارنة بين التوليد باستخدام الطاقة الشمسية والتوليد باستخدام الوقود الاحفوري من الإدارة المختصة بوزارة الموارد المائية والكهرباء ومن الشركة السودانية للتوليد الحركي.
5 الإجراءات المشتركة بين القطاعات
هي عبارة عن الإجراءات التي تهم أكثر من قطاع في أن واحد ولا يمكن إدراجها تحت قطاع محدد

5.1 جدول الإجراءات المشتركة

<table>
<thead>
<tr>
<th>الإجراء</th>
<th>مدة التنفيذ</th>
<th>الطاقة المتوقعة توفيرها خلال 4 سنوات 2013-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>بطاقات كفاءة الطاقة</td>
<td>تحدد لاحقاً</td>
<td>سنتين</td>
</tr>
</tbody>
</table>

5.1.2 المعلومات التفصيلية المتعلقة ببطاقات كفاءة الطاقة

هذا الإجراء لا يمكن حساب الوفير له في الوقت الحاضر بسبب الحاجة إلى تحضيرات تشمل حصر الكميات وأنواع الأجهزة المستهدفة ومعدل إستهلاكها من الطاقة ويمكن اعتباره إجراء داعماً حتى إكمال التحضيرات.

<table>
<thead>
<tr>
<th>البطاقة كفاءة الطاقة</th>
<th>الإجراء رقم (1)</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>تحقيق وفورات في الطاقة المستهلكة في الأجهزة الكهربائية المنزلية المستخدمة في كل القطاعات الاستهلاكية</td>
<td>الدافع لتطبيق</td>
<td>1</td>
</tr>
<tr>
<td>تطبيق نظام بطاقات كفاءة الطاقة على اللوحات والثلاجات ومكيفات الهواء والمرافق</td>
<td>وصف الإجراء</td>
<td>2</td>
</tr>
<tr>
<td>إنشاء مختبرات علمية لتأكيد معايير الأجهزة بالتنسيق مع الشركة السودانية لتوزيع الكهرباء</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وضع التصميم المناسب للبطاقات لتصدر وتفعيل الالتزامات اللازمة لتطبيق النظام التطبيق الفعلي لاستخدام نظام البطاقات في العام 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>الهيئة السودانية للمواصفات والمقاييس</td>
<td>الجهات المسؤولة عن التنفيذ</td>
<td>3</td>
</tr>
<tr>
<td>الهيئة السودانية للمواصفات والمقاييس، الشركة السودانية لتوزيع الكهرباء</td>
<td>الجهات المعنية</td>
<td>4</td>
</tr>
</tbody>
</table>
5.2 الإجراءات الداعمة التي يصعب تقديم الوفورات بها

هذه الإجراءات تقع تحت مسؤولية الجهاز الفني لتنظيم ورقابة الكهرباء ويتطلب تمويلها من مواردها السنوية.

5.2.1 جدول الإجراءات الداعمة

<table>
<thead>
<tr>
<th>الخطوات الأولية التي اتخذت</th>
<th>وصف وعنوان إجراءات كفاءة الطاقة</th>
</tr>
</thead>
<tbody>
<tr>
<td>تحدد لاحقاً تكاليف تنفيذ الإجراء</td>
<td>إقامة ورش لتحسين كفاءة الطاقة في الأجهزة والمعدات في قطاع الصناعة</td>
</tr>
<tr>
<td>التكاليف الكلية</td>
<td></td>
</tr>
<tr>
<td>تكلفة الورق</td>
<td></td>
</tr>
<tr>
<td>تخفيض الدعم</td>
<td></td>
</tr>
<tr>
<td>مصدر التمويل</td>
<td></td>
</tr>
<tr>
<td>الأليات المالية المحفزة</td>
<td></td>
</tr>
<tr>
<td>التوعية</td>
<td></td>
</tr>
<tr>
<td>تقييم الورق على مستوى القطاع</td>
<td></td>
</tr>
</tbody>
</table>

الهيئة السودانية للمواصفات والمقاييس والشركة السودانية لتوزيع الكهرباء

العمل على خفض التعرفة الجمركية على الأجهزة ذات الكفاءة العالية

توعية المستهلكين من خلال أجهزة الإعلام المرئية والمسموعة والمقرية;

عقد ورش عمل

يتم التوفير في الطاقة حسب الأجهزة العالية الكفاءة المصدر بتناولها من الهيئة السودانية للمواصفات والمقاييس

جمع المعلومات عن الأجهزة عالية الكفاءة التي تم التصديق لها عن طريق العمل ومقارنتها بالأجهزة المنخفضة الكفاءة التي كانت مستخدمة من حيث استهلاك الكهرباء ليكون الفرق في عدد سنين العمر الافتراضي للأجهزة هو الفرقواط ساعة الموفر
العمل والغرف التجارية والصناعية

<table>
<thead>
<tr>
<th>هذه العملية</th>
<th>هذه العملية</th>
</tr>
</thead>
<tbody>
<tr>
<td>توضح التصوير العام وتجميعها بواسطة الجهاز الفني لتنظيم ورقابة الكهرباء وتستدف الدراسات التشغيل الأمثل للأنظمة الصناعية وإيجاد وسائل لرفع كفاءة المعدات في القطاعات الصناعية والزراعة والتجارية</td>
<td>تقييم تطوير سياسات كفاءة الطاقة في الادغمة والمستخدم في قطاعات الصناعة، الزراعة وقطاع الخدمات</td>
</tr>
<tr>
<td>تم إعداد دليل للمستهلك بواسطة الجهاز الفني (في انتظار اعتماده) لترويج ورشة سلوكيات الاستهلاك</td>
<td>التوعية بتقنية الترشيد وربط سلوكيات الاستهلاك</td>
</tr>
<tr>
<td>جاري سعي الجهاز الفني للتعاون مع مستشار محلي لوضع كود المباني</td>
<td>دعم وتفعيل اصدار كود المباني</td>
</tr>
</tbody>
</table>

6 تقييم تطوير سياسات كفاءة الطاقة

6.1 جدول تقييم تطوير سياسات كفاءة الطاقة

<table>
<thead>
<tr>
<th>التقدم النوعي</th>
<th>الإجراء</th>
<th>الرقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>تم الإعلان عن خطة وطنية لكفاءة الطاقة حسب مقررات اجتماع مجلس الوزارة رقم (4) بتاريخ 17/4/2011م الذي يرأسه السيد وزير الكهرباء، فقد تقرر أن تكون أعمال كفاءة الطاقة من ضمن عمل الجهاز الفني لتنظيم ورقابة الكهرباء، وحسب مقررات الاجتماع رقم (5) بتاريخ 13/5/2011م والذي أكد على أن الجهاز الفني لتنظيم ورقابة الكهرباء هو صاحب الدور الأول في إدارة برامج الخطط الوطنية لكفاءة الطاقة بالتعاون مع الجهات ذات الصلة.</td>
<td>الإعلان عن سياسة وطنية لكفاءة الطاقة.</td>
<td>1</td>
</tr>
<tr>
<td>بإنشاء لجنة فنية مسؤولة عن وضع الخطة الوطنية لكفاءة الطاقة.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>وضع مشروع إستراتيجية للكفاءة الطاقية على المستوى الوطني وتحميمه على المؤسسات المعنية للإطلاع ووضع الملاحظات.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>لا يوجد وجود مشروع قرار أو قانون أو تشريع خاص بكفاءة الطاقة لدى البرلمان وحاجة إلى مصادقة.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>تسعى الوزارة للاستصدار قانون للطاقة المتجددة وقد تم اقتراح لجنة لصياغة المسودة</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>نشر أحد التشريعات أو القوانين للعامة تمهيداً لسريانه.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>تم تحديد الأهداف الإستراتيجية ضمن هذه الخطة - تخفيض الفقد الكهربائي ليصل إلى 3% في شبكات النقل في العام 2020م والتوزيع 12% في نهاية العام 2016م خفض استهلاك الكهرباء في القطاع الحكومي بنسبة 15% خلال عامين</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>تحديد هدف محدد في قطاع ما أو إجراء ما للوصول له.</td>
<td></td>
</tr>
</tbody>
</table>

م.علي عبد الغفار الحاج-مدير الإدارة العامة للتوعية وحماية المستهلك
م.شرف الدين عبد الله العاقب- مدير قسم التكلفة
م. وائل علاء الدين الدليل- مدير قسم الشكاوي الفنية
م. هشام عبد القوي احمد-قسم الترخيص
م. أسامة عثمان الشيخ أحمد- مدير قسم مراجعة الخطط
م. علاء الدين ادم محمد علي- الإحصاء والمعلومات فيزيائي
نسرين عبد الفتاح علي عبدون- قسم البحوث والدراسات
لا يوجد

وضع خطة تنفيذ لأحد السياسات أو التشريعات أو القوانين الصادرة ولم تطبق بعد.

- دراسة مساعدة يتم من خلالها تقدير المسئوليات والاحتياجات لتنفيذ سياسة ترشيد استهلاك الطاقة ورفع كفاءاتها على المستوى الوطني.

تتكفل الجهات المسئولة عن الإجراءات بالتمويل من موارناتها أو وفق جداول الإجراءات

تخصيص موارنة أو خطة تمويلية أو قروض لمشاريع كفاءة الطاقة.

لا يوجد

وضع سياسة بحيث يتم التعامل مع كفاءة الطاقة وطرحه كناقشة بشكل شبيه لمحطات توليد الطاقة الكهربائية.
أمثلة لحساب الوفر
Niyla Wind Farm

<table>
<thead>
<tr>
<th>Year</th>
<th>Gross Energy GWh</th>
<th>Net Energy GWh</th>
<th>Gas Oil Saved (Ton)</th>
<th>Saved (Toe)</th>
<th>Avoided CO2 Emission (Ton)</th>
<th>Cumulative Saving (Toe)</th>
<th>Cumulative Saving CO2 (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>71.83</td>
<td>71.83</td>
<td>22,545</td>
<td>23,082</td>
<td>67,104</td>
<td>46,163</td>
<td>134,208</td>
</tr>
<tr>
<td>2016</td>
<td>71.83</td>
<td>71.83</td>
<td>22,545</td>
<td>23,082</td>
<td>67,104</td>
<td>46,163</td>
<td>143.66 GWh</td>
</tr>
<tr>
<td>2017</td>
<td>71.83</td>
<td>71.83</td>
<td>22,545</td>
<td>23,082</td>
<td>67,104</td>
<td>46,163</td>
<td>143.66 GWh</td>
</tr>
<tr>
<td>2018</td>
<td>71.83</td>
<td>71.83</td>
<td>22,545</td>
<td>23,082</td>
<td>67,104</td>
<td>46,163</td>
<td>138,490</td>
</tr>
<tr>
<td>2019</td>
<td>71.83</td>
<td>71.83</td>
<td>22,545</td>
<td>23,082</td>
<td>67,104</td>
<td>46,163</td>
<td>402,625</td>
</tr>
<tr>
<td>2020</td>
<td>71.83</td>
<td>71.83</td>
<td>22,545</td>
<td>23,082</td>
<td>67,104</td>
<td>46,163</td>
<td>430.99 GWh</td>
</tr>
</tbody>
</table>

- **Plant Capacity (MW):** 20
- **Plant Capacity Factor:** 41%
- **Auxiliary consumption in Niyla Wind Farm:** 0.00%
- **Hours in one year:** 8760
- **Auxiliary consumption in Niyala thermal P:** 10.15%
- **SFC of Niyala Thermal PP (Ton/MWh):** 0.282
- **Toe for 1 Ton of Gas Oil:** 1.0238095
- **CO2 Emission of Diesel oil (g/MJ):** 69.22
- **Calorific value of Diesel Oil (MJ/Ton):** 43000
- **Calorific value of crude Oil (MJ/Ton):** 42000
Transmission System Losses Reduction 2013 - 2020

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy Received (GWh)</th>
<th>Energy Sold (GWh)</th>
<th>Losses Planned %</th>
<th>Gain in Loss each year %</th>
<th>Gain in loss from reference year%</th>
<th>Total Annual Losses (GWh)</th>
<th>Energy saved from previous year (GWh)</th>
<th>Energy saved from reference year (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>8,024</td>
<td>7599</td>
<td>5.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>10000</td>
<td>9540</td>
<td>4.60</td>
<td>0.70</td>
<td>0.70</td>
<td>460</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2013</td>
<td>12,114</td>
<td>11629</td>
<td>4.00</td>
<td>0.60</td>
<td>1.30</td>
<td>485</td>
<td>73</td>
<td>157</td>
</tr>
<tr>
<td>2014</td>
<td>13,932</td>
<td>13395</td>
<td>3.85</td>
<td>0.15</td>
<td>1.45</td>
<td>536</td>
<td>21</td>
<td>202</td>
</tr>
<tr>
<td>2015</td>
<td>16,021</td>
<td>15428</td>
<td>3.70</td>
<td>0.15</td>
<td>1.60</td>
<td>593</td>
<td>24</td>
<td>256</td>
</tr>
<tr>
<td>2016</td>
<td>17,944</td>
<td>17307</td>
<td>3.55</td>
<td>0.15</td>
<td>1.75</td>
<td>637</td>
<td>27</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>19,918</td>
<td>19241</td>
<td>3.40</td>
<td>0.15</td>
<td>1.90</td>
<td>677</td>
<td>30</td>
<td>378</td>
</tr>
<tr>
<td>2018</td>
<td>21,910</td>
<td>21198</td>
<td>3.25</td>
<td>0.15</td>
<td>2.05</td>
<td>712</td>
<td>33</td>
<td>449</td>
</tr>
<tr>
<td>2019</td>
<td>23,882</td>
<td>23141</td>
<td>3.10</td>
<td>0.15</td>
<td>2.20</td>
<td>740</td>
<td>36</td>
<td>525</td>
</tr>
<tr>
<td>2020</td>
<td>26,031</td>
<td>25250</td>
<td>3.00</td>
<td>0.10</td>
<td>2.30</td>
<td>781</td>
<td>26</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 2013-2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Total 2013-2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2952</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
1. Reference year is 2011
2. 2012 is considered planning year
3. Growth in received energy after 2016 is made by logical assumptions
Replacement of Incandescent Lamps with CFL

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of Consumers</th>
<th>Total No. of Incandescent Lamps</th>
<th>Total Incandescent Lamps Consumption (GWh)</th>
<th>Expected No. of CFL</th>
<th>Saving in (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1,546,186</td>
<td>3,092,372</td>
<td>339</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>1,828,659</td>
<td>3,657,318</td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>2,060,940</td>
<td>4,121,880</td>
<td>451</td>
<td>500,000</td>
<td>43.80</td>
</tr>
<tr>
<td>2014</td>
<td>2,322,679</td>
<td>4,645,358</td>
<td>509</td>
<td>1,000,000</td>
<td>87.60</td>
</tr>
<tr>
<td>2015</td>
<td>2,617,659</td>
<td>5,235,318</td>
<td>573</td>
<td>1,000,000</td>
<td>87.60</td>
</tr>
<tr>
<td>2016</td>
<td>2,950,102</td>
<td>5,900,204</td>
<td>646</td>
<td>1,000,000</td>
<td>87.60</td>
</tr>
<tr>
<td>2017</td>
<td>3,215,611</td>
<td>6,431,222</td>
<td>704</td>
<td>1,500,000</td>
<td>131.40</td>
</tr>
<tr>
<td>2018</td>
<td>3,472,860</td>
<td>6,945,720</td>
<td>761</td>
<td>2,000,000</td>
<td>175.20</td>
</tr>
<tr>
<td>2019</td>
<td>3,750,689</td>
<td>7,501,378</td>
<td>821</td>
<td>2,500,000</td>
<td>219.00</td>
</tr>
<tr>
<td>2020</td>
<td>4,050,744</td>
<td>8,101,488</td>
<td>887</td>
<td>3,000,000</td>
<td>262.80</td>
</tr>
<tr>
<td></td>
<td>Total 2013-2016</td>
<td></td>
<td>306.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 2013-2020</td>
<td></td>
<td>1,095.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Average No of lamps/consumer: 2
- Average Operating hours/day: 3
- CFL life time: 3 years
- Target No. Of CFLs: 1,000,000
- Incandescent Lamp Rating (W): 100
- CFL Rating (W): 20

Remarks:
1. After 3 years of awareness No of CFLs will increase
2. After 2015 Consumers will go to CFL on their own
الخطة الوطنية لكافاءة الطاقة 2013 - 2016

إجمالى الوفر

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand after saving GWh</td>
<td>8315</td>
<td>10170</td>
<td>12073</td>
<td>13377</td>
<td>14907</td>
<td>16687</td>
<td>18563</td>
<td>20447</td>
<td>22311</td>
<td>24359</td>
</tr>
<tr>
<td>Savings GWh</td>
<td>0</td>
<td>204.3</td>
<td>480.3</td>
<td>1060</td>
<td>1695</td>
<td>1908</td>
<td>2077</td>
<td>2258</td>
<td>2437</td>
<td>2616</td>
</tr>
</tbody>
</table>

9.7% Saving